Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SCHOTT develops new manufacturing technique for its LASF35 glass

13.06.2008
Continuous production improves transmission for glass with high refractive index

Thanks to its extremely high index of refraction, LASF35 glass offers excellent properties for sophisticated lens systems used in tight spaces. By relying on a continuous production technique, SCHOTT has also optimized the internal transmission. Particularly within the blue wavelength region, this glass offers substantially better properties than comparable optical materials.


Ball lenses are used in the writing or reading heads of DVD/DVR systems, in micro technology or in fiber optics to couple or collimate optical light. With diameters of between 0.040 and 10 mm, SCHOTT AG manufactures ball lenses from various optical glasses and achieves coupling efficiencies of 75 %. Depending on the application, optical glasses such as N-BK7, but also highly refractive glasses like LASF35 with its unique refractive index of nd = 2.02, are put to use.

SCHOTT Advanced Optics, the optics division of the international technology company, will be unveiling an improved version of its LASF35 glass (nd = 2.02204; vd = 29.06) at the international trade fair “Optatec” in Frankfurt, Germany. In doing so, SCHOTT is optimizing its line of glasses that feature high refractive indexes in extreme regions of the Abbe diagram.

“Glasses with a high refractive index represent an important prerequisite for the increasing miniaturization of optical technologies,” notes Dr. Bernhard Hladik, Product Manager of Optical Glass at SCHOTT AG. “This improvement to our product portfolio will offer new potential for innovation for industrial lenses, medical technology, optoelectronics and laser technology, as well as related advanced technologies,” he adds.

LASF35 glass is particularly well-suited for miniaturized lens systems, such as those used as ball lenses or micro prisms in medical technology for endoscopes, microscopes and other micro lenses, for example.

When it comes to manufacturing, SCHOTT uses a continuous melting process and, therefore, achieves much higher internal transmission (63 % at 400 nm for a thickness of 10 mm; color code: 45/37) that truly outshines all other comparable glasses, particularly inside the blue wavelength region.

The new glass has been approved in accordance with the European Guideline 2002/95/EG (RoHS, Restriction of the use of certain hazardous substances in electrical and electronic equipment). SCHOTT is also planning to introduce a version called N-LASF35 that will be free of arsenic in the future.

SCHOTT is an international technology group that sees its core purpose as the lasting improvement of living and working conditions. To this end, the company has been developing special materials, components and systems for nearly 125 years. The main areas of focus are the household appliances industry, pharmaceuticals, solar energy, electronics, optics and the automotive industry.

The SCHOTT Group is present in close proximity to its customers with production and sales companies in all its major markets. The Group’s approximately 16,700 employees generate worldwide sales of approximately 2.1 billion euros. The company's technological and economic expertise is closely linked with its social and ecological responsibility. The parent company of the SCHOTT Group is SCHOTT AG, whose sole shareholder is the Carl-Zeiss-Stiftung (Foundation).

Contact:
SCHOTT AG
Christine Fuhr
PR Manager
Corporate Public Relations
Phone +49 (0)6131 / 66-4550
Fax +49 (0)6131 / 66-4041
E-Mail christine.fuhr@schott.com

Christine Fuhr | SCHOTT AG
Further information:
http://www.schott.com

More articles from Process Engineering:

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht NIST research sparks new insights on laser welding
02.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>