Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The crack as a tool

30.05.2008
We encounter glass everywhere – as window and facade glazing, coffee-table tops and shelving. A new process makes it possible to cut the brittle material cost-efficiently and opens up new applications thanks to superior edge quality.

Glass is a versatile, popular material for a wide range of applications. Cutting the glass is key to obtaining high-quality products. In the conventional process used to cut flat glass, a small cutter wheel scores a line into the glass. Pressure is then applied to the glass along this line so that it breaks.

Unfortunately, glass splinters may come off in the process, producing defects known as micro-cracks. The glass consequently needs to be reworked by grinding and polishing, which costs time and money. Nonetheless, damages may remain in the glass that reduce its strength.

A great deal of time and money, limited design options – reason enough to develop a better, more effective process for separating glass. In a project funded by the Federal Ministry of Education and Research (BMBF), Dr. Rainer Kübler has been working with his five-strong team on a laser-induced stress separation process for flat glass that causes minimal damage. Dr. Rainer Kübler has been awarded the Joseph-von-Fraunhofer Prize 2008 for his work.

So what do the Fraunhofer scientists do that is different? Instead of scoring the glass mechanically, they do it by applying stress. “We have to heat the glass along the required separation line without damaging it,” explains Dr. Kübler. “We do it with a CO2 laser.” The second part of the secret is to shock-cool the glass by means of a cooling nozzle following right behind the laser beam, blowing cold air onto a specific area of the glass. The temperature difference creates a stress field and, in turn, a crack. Then the thermal crack introduced into the surface by this process is opened by bending the glase plate until it separates. Extensive experience and numerical simulation have helped to manage the process and particularly the crack – to produce the crack in a controlled manner and use it as a tool. “Our process has enabled us to produce extremely high-quality glass edges. And flawless, smooth edges mean firmer glass,” says Dr. Kübler. The stability of the edges determines the strength of the entire pane.

All of this opens up entirely new applications for the use of glass panes in architecture. Thanks to the flawless edges, the installed glass panes can be made thinner without sacrificing any of their reliability. And Grenzebach, the development partner, is a global player in glass production technology, providing the new process with ready access to a global market.

Press Office | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2008/05/ResearchNews5s2008Topic2.jsp

More articles from Process Engineering:

nachricht Design treatment of advanced metals producing better sculpting
08.03.2019 | Purdue University

nachricht Laser Processes for Multi-Functional Composites
18.02.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>