Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selective nanofilters for proteins, DNA

03.07.2002


A new type of nanotechnology-based filter that can separate out mixtures of biological molecules has been developed by researchers at the University of California, Davis. The technology could potentially be used, for example, to build small-scale devices for research in genomics by sorting mixtures of different proteins or DNA molecules.



The filter consists of a polycarbonate membrane etched with tiny, evenly-sized pores less than 10 nanometers -- a few billionths of an inch -- in size. The pores are lined with a thin layer of gold and then with another layer of oily molecules called thiols. The thiols spontaneously arrange themselves into a membrane one molecule deep, with all the thiol molecules pointing the same way.

These thiols are chains of carbon atoms, with a sulfur atom at one end and an acidic region at the other end. The sulfur allows the thiol to stick to the gold layer, and the acidic end can then interact with whatever flows past. The final pores are less than nine nanometers wide.


UC Davis researchers Kyoung-Yong Chun and Pieter Stroeve found that by changing the pH on either side of the membrane, they could "open" or "close" the pores to different proteins even of similar size, using a method called electrostatic screening. Existing filters can only effectively separate proteins or biological molecules of different sizes.

"The switchable technology will be important for transport on the nano-scale, particularly for nano and micro-sensing, analysis on a chip and micro-fluidic devices," Stroeve said. Another application could be in controlled drug release, supplying drugs over a period of time when the body needs it, he said.

The work is published in the June 11 issue of the journal Langmuir.

Media contacts: Pieter Stroeve, Chemical Engineering and Materials Science, 530-752-8778, pstroeve@ucdavis.edu; Andy Fell, News Service, 530-752-4533, ahfell@ucdavis.edu.

Andy Fell | EurekAlert!

More articles from Process Engineering:

nachricht Laser Processes for Multi-Functional Composites
18.02.2019 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Efficient reactor dismantling by laser beam cutting?
05.02.2019 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>