Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab Tech Associate Invents Lockout Device for Equipment with Removable Power Cords

28.06.2002


It was the early 1990s and building Jefferson Lab’s Continuous Electron Beam Accelerator was in high gear. The Accelerator Division was busy installing some 30 vacuum ion pumps in the tunnel. Simultaneously, above ground in the long, low service buildings sitting over the tunnel, workers were installing and wiring the 7 kV, high-voltage power supplies for those ion pumps.



"With the procedures we had in place we were never in danger," recalled Rick Gonzales, Accelerator Electronics Support (AES) technical associate, "but we didn’t want to take any unnecessary chances while we were working on the pumps, with the power supplies remotely mounted. We searched catalogues and asked vendors for a good lockout device we could use on the pumps, but nothing existed for equipment with removable power cords."

"So we made do with duct tape and a magic marker," Gonzales continued. "We would cover a pump’s power-cord connector with tape so the cord couldn’t be plugged in. And with the marker we wrote ’don’t plug in’ across the tape. It was our added safety measure while we did the work. This way no one could power up the supply while we were working on the pump."


Trying to find a better way to deal with this safety concern, Gonzales came up with an idea for a lockout device, but it just didn’t work out. Then about seven years later another design idea hit him. "This one was it. I just knew it," Gonzales said. "I carved a prototype out of a piece of plastic. I was really excited." After developing a working model, he worked with the Lab’s Legal counsel and the Technology Transfer office to patent the device."

Jefferson Lab’s contract manager - SURA - or the Southeastern Universities Research Association, was awarded the patent on the lockout device in October 1999. During the year and a half it took for the patent to be awarded, Gonzales and the Lab became interested in seeing a manufacturer bring the device to the commercial market. "A lockout device for an electronic component with a removable power cord could be used for both safety and security purposes on so many different types of equipment," Gonzales explained.

He talked with several companies that sell electronic instrumentation and safety equipment; but no one was interested in commercializing the lockout mechanism. He also talked with several companies that produce plastic and rubber molded parts (needed to build the device) to determine what it would take and how much it would cost to commercially produce the device.

Gonzales was frustrated to find that companies just weren’t interested in building the lockout. He found a few vendors interested in selling the lockout, but no one wanted to produce the simple, straightforward device. (Two pieces of molded plastic, a hunk of vulcanized rubber, a small metal plate, a nut and a screw are all that it consists of.) "The companies just didn’t want to take on the risk or cost of bringing a new product to market," he said.

Then about a year ago he approached his local Chamber of Commerce Business Development Center to see if they could offer him any advice. They suggested that he sit in on their Small Business Startup class. "While I was taking the class, I realized: I knew this device inside and out. I knew how much it would cost to procure each part and how much it could be sold for. I knew which vendors could produce the needed parts," Gonzales commented. "It was right there in my face. I had done all the research someone does to set up a small business. A week later my wife and I made a licensing proposal to the Lab and after the agreement was signed we created Southside Safety, Inc. and started commercial production of the LOCKOUT 320TM - the perfect device for securing equipment that uses a removable input power cord."

All of this extra work - on Rick’s own time - is now making the LOCKOUT 320small>TM commercially available to the public. Despite a lot of expense and discouragement, Gonzales continues believing in the potential for the lockout device, and he’s persevered. For more information about the LOCKOUT 320TM, visit www.southsidesafetyinc.com.

Any company or small business may submit a proposal to obtain a license of rights from SURA to use, manufacture or sell a SURA invention or patent.

Linda Ware | EurekAlert!

More articles from Process Engineering:

nachricht Clean without scrubbing and using chemicals
28.05.2020 | Technische Universität Dresden

nachricht Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight
16.01.2020 | Institut national de la recherche scientifique - INRS

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

German-British Research project for even more climate protection in the rail industry

28.05.2020 | Transportation and Logistics

A special elemental magic

28.05.2020 | Physics and Astronomy

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>