Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Passive sensors remotely monitor temperature and stress

26.06.2002


The same material that makes the theft detectors go off in a department store when the salesperson forgets to remove the anti-theft tag, may make inexpensive, passive temperature and stress sensors for highways, concrete buildings and other applications possible, according to Penn State researchers.



"These materials typically cost about $100 a mile and each sensor is about an inch long," says Dr. Craig A. Grimes, associate professor of electrical engineering and member of Penn State’s Materials Research Institute. "Consequently, the sensors would cost just about nothing, or about a half cent apiece."

The material used in these sensors is an amorphous ribbon of alloy that is manufactured to be softly magnetic by quick cooling. One example is an iron, molybdenum, boron, silicon alloy. Magnetically soft materials have no strong fixed magnetic fields, even though they contain iron. In magnetically soft materials, the magnetic field switches back and forth depending on the environment and can generate many higher order harmonic frequencies.


"These magnetoelastic thin-film sensors are the magnetic analog of an acoustic bell," says Grimes. "When an externally applied magnetic field reaches the sensors, they ring like a bell, emitting both magnetic flux and acoustic energy with a characteristic resonant frequency." Just as a bell changes pitch and overtones when heated or cooled, the magnetoelastic thin-film changes magnetic response.

When a customer walks out of a department store with an anti-theft device still on a purchase, these metal strips set off an alarm because the sensors at the door sense the soft magnetic field. To use these strips as temperature and stress sensors, an activator must be passed near the sensor strips. Because the sensors operate passively and remotely, there are no wires or connectors required, so the sensors are simply and even randomly imbedded in the material to be sensed.

A simple loop that generates a magnetic field activates the sensor from a distance. This magnetic field is not blocked by the materials in the road surface or concrete and is not altered by any iron, such as rebar in construction concrete. Rebar does not have the magnetic properties needed to support the higher frequency harmonics. A figure-eight loop senses the strips’ response, reading the harmonics of the strips magnetic field. These harmonics are like the overtones of the bell and change as the environment of the strip changes.

On roadways, sensor strips embedded in the road surface could indicate when temperatures are low enough for salt application, but not too low for the salt to do any good. In the case of buildings involved in earthquakes or other structurally altering events, the sensors can indicate a change in the stresses inside the concrete and help to determine if the building is safe for occupancy.

The strips need to be coated with a polymer to avoid corrosion, although if corrosion is the property to be sensed, then the strips should be either left uncoated to corrode or coated with an analyte responsive layer.

In a recent issue of Applied Physics Letters, Grimes, with Dale M. Grimes, professor emeritus of electrical engineering, and Keat G. Ong, postdoctoral fellow at Materials Research Institute, say that "we found the temperature response of 40 sensors to be experimentally identical." These simple sensor strips provide a consistent temperature reading.

Because the sensors are softly magnetic, their orientation in the materials relative to the activatoris unimportant.

These sensors can also be immersed in water or other liquids and provide not only temperature but also viscosity, liquid density and surface tension. Because the sensors are so inexpensive, their use in a wide variety of materials, sensing a wide number of properties, may be possible in the future.

Grimes has a patent on this work, which was supported by NASA and National Science Foundation.

Andrea Elyse Messer | EurekAlert!

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>