Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Treatment Transforms MDF Producing Startling Image of Rare Wood Grains

10.03.2008
Researchers at WMG at the University of Warwick have devised a way of using a laser that transforms MDF giving it a surface finish that looks like some of the most expensive wood grains.

The “LaserCoat” research project in a collaborative research effort consisting of eight academic, research and commercial organisations and part-financed by the Technology Strategy Board.

University of Warwick WMG researcher Dr Ken Young said:

“MDF is a superb and highly versatile material. It’s easy to work with and cheap. It is usually made from waste material so it is much kinder to the environment than using more real wood. But normally it looks rather dull in its raw state. Until now there has been no way to liven it up other than painting it.”

“Using lasers to produce a wood grain in MDF could help bring a more natural quality into homes and businesses without the financial and environmental cost of having to use new wood.”

The technology also has great potential for commercial use as it is very hardwearing and can be used for flooring or other applications where cost is an issue but where looks are important too. It can mimic a vast range of real wood grains, it can produce logos, decoration, or even coloured and shaped decorative surfaces using a powder coating version of this new laser technology.

Mick Toner, Factory Manager of Howarth Windows & Doors sees significant benefits from the new technology for his business

“We would love to use MDF for the glazing beads in doubling glazing but customers do not like the look of raw MDF. This LaserCoat technology will provide a grained look that will delight our customers, give us much more manufacturing flexibility and cut the cost of the raw materials four fold”

“MDF is also an ideal material for providing the thermal insulation required for modern doors. Our customers are increasing using translucent coatings on their doors which are not aesthetically pleasing on MDF panels – the LaserCoat technology cuts through this problem providing an attractive surface for MDF no matter the coating used”

The ‘LaserCoat’ project is supported by the Furniture Industry Research Association and the Timber Research and Development Association. It is part-funded by the Department for Business, Enterprise and Regulatory Reform.

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/icast/archive/s2week16/mdf/
http://www2.warwick.ac.uk/newsandevents/pressreleases/laser_treatment_transforms/
http://www2.warwick.ac.uk/newsandevents/pressreleases/laser_treatment_transforms/

More articles from Process Engineering:

nachricht A water treatment breakthrough, inspired by a sea creature
27.11.2018 | Yale University

nachricht Research project AutoAdd: Paving the way for additive manufacturing for the automotive industry
22.11.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>