Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossils Point the Way to Black Gold

10.06.2002


Drilling for oil is expensive – and only too often unsuccessful: in 80 to 90 per cent of all attempts the drill head ends up in worthless sediment rather than hitting the black jackpot as intended. In this way, with every unsuccessful drilling, companies squander several million euros. Yet there is an alternative: the use of tiny fossilised single-celled organisms can reveal to the expert where prospecting for oil is worth while, a dying art at which only a few specialists worldwide still remain proficient. A micro-palaeontologist at the University of Bonn is now training specialists in this discipline in conjunction with the firm RWE/DEA.


Microfossils
(photo: Langer)



Some of them look like two-euro pieces made of limestone. For oil companies they can be worth their weight in gold, these unicellular organisms from the foraminifer group. In the sediments of the oceans there are sometimes veritable mass graves of these ancient fossils, which are shaped like round, flat discs or small bulbous lenses, some of them smooth, some provided with bizarre protuberances. What they all have in common is the porous limestone shell with which they are surrounded – and which makes them so important in the search for black gold. The reason for this is that sediments with a high proportion of foraminifers can absorb oil and gas in the porous limestone mantles like an enormous sponge – ideal conditions for the existence of a large deposit.

“Oil is formed when organic material is subjected to pressure and high temperatures, usually at a depth of several kilometres beneath the surface of the land or the ocean bed,” Professor Martin Langer of the Bonn Institute of Palaeontology explains. From there the oil passes through the strata of rock above as if through blotting paper, until it is prevented from rising further, for example by a layer of clay, which acts as a kind of lid. Whether the deposit is likely to yield a lot of oil basically depends – apart from the shape of the “lid” – on the storage capacity of the rock strata involved.


In order to detect this popular energy source the companies carry out a kind of “ultrasonic test” in potentially promising areas: they produce sound waves, monitoring the way they expand and are reflected in the ground by means of geophone recordings. Computers then produce pictures on the basis of the seismic data, which show the pattern of strata in the ground – and on which the trained eye can recognise potential deposits. “However, unfortunately the pictures only have a limited spatial resolution, “ Professor Langer explains. “Firms frequently drill a few hundred yards away from the right location. At the depth indicated they then only find empty rocks.” By means of the microfossils which the drill brings to the surface experts can conclude whether the area really is empty, or whether the drill has simply not yet reached the oil deposits. The fossil finds even enable specialists to find their bearings on the seismic map: by comparing the finds with the strata predicted, the micro-palaeontologist can determine where exactly the drilling should be made or how it needs to be corrected at the second attempt.

“Industrial micro-palaeontology is a venerable art,” Professor Langer adds. “All the large oil prospecting companies used to employ their own fossil experts.” When seismology came along it was thought that the new technology alone would solve the problem. “Since 1980 many micro-palaeontologists have been made redundant, which is why there are so few people to take their place.” Many companies have now realised their error, but there is a shortage of specialists who can provide appropriate training for new micro-palaeontologists. Last spring, for the first time, Professor Langer offered a vocational training course in this long neglected field – and it was a huge success. “We had applicants coming for the two-day course from the US, India and South Africa.”

Worldwide there are only a few institutions in the US and Europe which train micro-palaeontologists for the oil industry. After the successful test run Professor Langer’s aim is now to establish the vocational training course at the University on a long-term basis. “Bonn has a long micro-palaeontological tradition. We have at our disposal one of the largest collections in the world. The chances are good that we could become an international centre for this branch of research, which had almost been consigned to oblivion.”

Professor Martin Langer | alfa
Further information:
http://www.uni-bonn.de/Aktuelles/Pressemitteilungen/153_02.html

More articles from Process Engineering:

nachricht Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight
16.01.2020 | Institut national de la recherche scientifique - INRS

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>