Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-optics: Getting the most out of tiny lasers

07.07.2014

An off-center waveguide enables light to be efficiently extracted from nanoscale lasers.

Semiconductor optical devices are becoming increasingly commonplace. For example, light-emitting diodes, as they become more power efficient, are rapidly replacing conventional light bulbs. Lasers too are now found in every barcode scanner and compact-disc reader.


Computer simulations show that efficient light extraction from a nanoring plasmonic laser can occur when a waveguide is connected flush with one edge of the device. Modified from Ref. 1 and licensed under CC BY-NC 3.0

Copyright : 2014 C. Lee et al.

When designing these devices, a crucial consideration is how best to get the light generated within the solid material out into the real world. Chee-Wei Lee at the A*STAR Data Storage Institute, Singapore, and international colleagues have now proposed a light-extraction scheme that is capable of transferring over half the light created by a submicrometer-scale laser into a waveguide(1).

Plasmonic lasers are the smallest lasers created to date — they can even be smaller than the wavelength of the light they emit. This counterintuitive property results from plasmons, which are hybrid electron–light particles created by coupling light with electrons in a metal.

Lee and his team considered the simplest plasmonic laser: a ring of a light-emitting semiconductor coated with a thin silver layer. Light can travel round and round inside the ring, which provides the optical cavity required in most laser devices.

What is more, this tiny laser can be bonded onto a silicon substrate to make it compatible with compact photonics-on-a-chip technology. Lee and his team used computer simulations to demonstrate that high extraction efficiency is obtained when a waveguide (a light-carrying submicrometer-wide semiconductor strip) is directly connected to the side of the laser.

The team used a numerical simulation technique called finite-difference time-domain to study the performance of waveguides of different widths connected at different points on the laser. Their models revealed that the optimal structure is an asymmetric one.

When the extraction waveguide is displaced from the center of the ring — so that the waveguide is flush with the edge of the cavity — it produces a peak out-coupling efficiency of 56 per cent (see image). “Our scheme, based on directly joining a waveguide, enhances light extraction by splitting the plasmon mode,” explains Lee.

Scientists have previously extracted light from plasmonic lasers by running a waveguide extremely close to, but not touching, the cavity ring. Light can leak across the gap between the laser and the waveguide through an effect called evanescent coupling.

But this approach requires precise control over the gap size and the optical properties of the material in the gap. The method developed by the team, however, can be implemented using much simpler device fabrication. “We are now in the process of actually realizing such a device,” says Lee.

Reference

1. Lee, C.-W., Singh, G. & Wang, Q. Light extraction — a practical consideration for a plasmonic nano-ring laser. Nanoscale 5, 10835–10838 (2013). 

Associated links

Lee Swee Heng | Research SEA News
Further information:
http://www.researchsea.com

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>