Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser scan at full speed

08.05.2012
Is a contact wire missing or is it faulty? What‘s the situation in front of the entrance to a railway station or a tunnel? A 3D laser scanner can increase the train‘s safety and reliability.

Laser systems can be used to implement highly precise and ultra-fast measuring processes. Railway measuring technology has a huge worldwide need here. One prerequisite for its use is that nobody is damaged or suffers irritations by the laser. Dr. Heinrich Höfler and Dipl.-Ing. Harald Wölfelschneider from the Fraunhofer Institute for Physical Measurement Techniques IPM in Freiburg have worked with their team to develop a 3D laser scanner.


Dr. Heinrich Höfler and Dipl.-Ing. Harald Wölfelschneider (from left to right) with a 3D laser scanner that improves safety and reliability on railroad tracks all over the world. © Dirk Mahler / Fraunhofer

It can be used outdoors without hesitation. Extremely fast and precise, it is able to spatially measure and monitor the position of the contact wire or the track from a train travelling at up to 100 kilometers (62 mph) per hour. If the scanner is stationary, it can capture passing trains and check for loads that might have slipped.

Heinrich Höfler explains how that works: “We send off a laser beam and wait until it returns. We measure the time in between and that tells us how far away an object is.” The difficult part is capturing the returning beam. Often, only very little light comes back and what‘s more, the transmitted light beam is back in an extremely short space of time. The solution: A kind of slow motion. The laser beam is very rapidly switched on and off – modulated, as scientists would put it. The time shift of this modulation wave can be determined more quickly and precisely than is possible with a single laser pulse.

Capturing obstacles and constrictions during movement

The system measures, by default, one million times per second. “For Deutsche Bundesbahn (German Railway), we equipped a measurement train that scans the surroundings of the test track, using several laser beams and which delivers, taking four million measurements per second, a 3D image of what it scans”, explains Harald Wölfelschneider. That allows even small obstacles and constrictions to be detected, or we can plan the route via which a heavy load can best be transported to its destination.

Another field of application is the measuring of passing trains. This requires the scanner to be permanently mounted, which, however, does increase the chance of someone looking into the laser beam for a longer period. To make the scanner safe for the human eye, the researchers had to develop a new wavelength range: infrared, which is harmless for our eyes. The consequence being that the entire system had to be fully reconfigured.

From railway to road – in global use

If we examine railways carefully, it makes sense that we then also examine other traffic routes, such as roads. The team at IPM has developed a 3D scanner, safe for the human eye, which is mounted onto a moving car and which scans the road from a height of about three meters. “We can now detect height differences of even 0.2 millimeters on the road, even at speeds of 80 kilometers per hour (approx. 50 mph)“, says Höfler. This is the first scanner approved for this purpose by the Federal Highway Research Institute. It is to detect lane grooves, potholes and water drainage potentials.

The laser system has already been marketed and used successfully all over the world for rail traffic safety. Not only fast and precise, this system is also highly robust. Dr. Heinrich Höfler and Dipl.-Ing. Harald Wölfelschneider will receive one of the 2012 Joseph-von-Fraunhofer awards for this eye-safe 3D laser scanner.

Dr. Heinrich Höfler | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/may/laser-scan-at-full-speed.html

Further reports about: Fraunhofer Institut IPM human eye laser beam laser system traffic route

More articles from Process Engineering:

nachricht Design treatment of advanced metals producing better sculpting
08.03.2019 | Purdue University

nachricht Laser Processes for Multi-Functional Composites
18.02.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>