Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative process for environmentally friendly manure treatment comes onto the market

03.05.2018

The BioEcoSIM process for the treatment of liquid manure developed at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB is being introduced to the market by SUEZ Germany as an operator of large-scale plants. This creates an opportunity for farms to dispose of surplus manure and digestate. Slurry treatment products are phosphate fertilizers, ammonium fertilizers and organic soil improvers. The partners will announce their cooperation for the market launch at IFAT from May 14 – 18 in Munich.

Around 200 million cubic meters of liquid manure from livestock farming end up in fields and meadows in Germany every year. More than 90 percent of the “black gold” consists of water and contains considerable amounts of the important plant nutrients nitrogen and phosphorus.


The BioEcoSIM process supplies both mineral ammonium and phosphorus fertilizers, and humus-forming soil improvers.

Fraunhofer IGB

However, if more liquid manure is applied to the fields than the soil can bind and plants can absorb, microorganisms convert the ammonium nitrogen in the soil into nitrate that seeps into the groundwater. The problem: Where large quantities of liquid manure are produced, there is often a lack of arable land that needs to be fertilized. For this reason, fattening farms use so-called slurry exchanges to order tankers to transport their slurry to areas requiring nutrients – often several hundred kilometers away.

With its BioEcoSIM process, the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB has developed an environmentally friendly solution. “We have combined various processing steps into an overall process and integrated them in a modular plant,” Dr. Iosif Mariakakis, the Fraunhofer IGB nutrient expert, explains.

This allows the valuable nutrients to be recovered as easily transportable and precisely metered phosphorus and ammonium fertilizer salts. The solid organic components are also recycled by drying and conditioning using an energy-efficient process. They are then available in the form of humus-forming soil improvers. Farm slurry is thus almost completely recycled and the recycled components are returned to the soil.

Large-scale implementation and operator model

With SUEZ Germany, Fraunhofer IGB has now gained a licensee for the patented technology. The globally operating waste recovery and recycling company will invest in processing plants as operator. “Gradually, large-scale technical facilities are to be built, on a nationwide basis, to take surplus manure from farmers, breeding and fattening farms. Especially the logistical aspects of delivery will be taken into account when selecting the plant locations,” says Kai Bastuck, Head of Recycling and Recovery Business Unit Development at SUEZ Germany, describing the business model.

“By recovering the finite raw material phosphorus, Germany's dependence on phosphorus imports is reduced. This conserves finite phosphorus resources and reduces pollutant inputs into soils. In this way, we contribute to a sustainable future and turn nutrients into valuable substances,” says Bastuck. Fraunhofer IGB supports SUEZ Germany in the further development of the process.

A first processing plant with a turnout of one cubic meter per hour is currently being built as a “Living Pilot Plant” at SUEZ’s Zorbau site in Saxony-Anhalt. The flexibly designed plant will process cattle and pig manure, but also fermentation residues from biogas plants, and thus serve as a blueprint for further large-scale plants.

“An average industrial-scale plant then produces about 100 kilograms of phosphate fertilizer, 100 kilograms of nitrogen fertilizer and 900 kilograms of organic, nutrient-poor solids per hour from ten cubic meters of raw slurry,” explains Siegfried Egner, Head of Department at Fraunhofer IGB.

The potential savings in synthetic fertilizers are enormous. With a capacity of one million cubic meters of liquid manure per year, which corresponds approximately to the quantity from around one hundred pig fattening farms, a plant can produce 10,000 metric tons of ammonium fertilizer and 10,000 metric tons of phosphate fertilizer. This corresponds to almost the annual requirements for the whole of Germany.

The BioEcoSIM process

Various process steps are necessary to completely process liquid manure. In a first step, the aqueous liquid manure is pretreated so that the phosphorus is completely dissolved. It is separated into a solid and a liquid phase by two-stage filtration.

The dewatered solid phase is dried using an energy-efficient process, also developed at Fraunhofer IGB, which operates with superheated steam in a closed system and is therefore particularly energy-efficient. The dried organic components can optionally be further converted to organic biochar at 450°C via a pyrolysis step – as in the drying step in an atmosphere of superheated water vapor.

The liquid manure fraction contains the dissolved inorganic nutrients. In a precipitation reactor, phosphorus is first recovered and precipitated and filtered off as calcium phosphate, magnesium phosphate or magnesium ammonium phosphate. Nitrogen is recovered in a second step. For this purpose, the aqueous fraction is separated as ammonium sulfate by means of membrane destillation, and crystallized. What remains is water that contains only traces of phosphorus and nitrogen but is rich in potassium; this can best be used for irrigation purposes.

In extensive investigations and field studies, the Fraunhofer researchers have shown that the mineral fertilizers and organic soil improvers prepared from farm slurry can be used directly as readily available fertilizers and humus-forming substrates in agriculture.

The BioEcoSIM processing method was developed within the BioEcoSIM project, which was funded by the 7th EU Research Framework Program from October 2012 to December 2016.


Presentation at IFAT

At IFAT 2018, the partners will be available in Munich from May 14–18 to provide further information and for discussions: Fraunhofer IGB at the Fraunhofer joint stand in Hall B2, Booth 215/314, SUEZ Germany in Hall A6, Booth 239.

Weitere Informationen:

https://www.igb.fraunhofer.de/en/press-media/press-releases/2018/innovative-proc...

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

More articles from Process Engineering:

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>