Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hollow structures in 3D

29.03.2019

Freiburg researchers succeed in printing channel structures in glass

Quartz glass is the preferred material for applications that require long-term use because of its high chemical and mechanical stability and excellent optical properties. The engineer Prof. Dr. Bastian E. Rapp from the Department of Microsystems Engineering (IMTEK) at the University of Freiburg and his team have developed the Glassomer process, a method that enables scientists to shape glass like plastic.


Three-dimensional hollow structures in quartz glass. Photo: AG Rapp

In the scientific journal “Nature Communication”, they recently presented a new application: They are now able to produce three-dimensional hollow structures in quartz glass.

Glass is chemically very resistant, which is why cavities such as optical waveguides or microfluidic channels are difficult to produce in it, especially if they have to be three-dimensional. The Glassomer process developed by Rapp and his team simplified this process.

Glassomer is a mixture in which high-purity silicon oxide is added in fine powder form to a liquid plastic. As long as this mixture is liquid, it can be processed like a plastic. When exposed to light, it hardens so that it can, for example, be drilled or milled.

During the final heat treatment step in the process, the plastic is decomposed leaving leaving a dense glass component. Until now, channel structures could not be manufactures because the researchers had to remove the liquid material from the cavities which is not possible for long channels.

The Freiburg scientists are therefore taking a different approach by first creating the desired cavity as a polymeric component in the 3D printer: A later channel is printed as a polymer thread and then encapsulated with Glassomer.

The finished printed product is then heated to 1,300 degrees Celsius so that the plastic - including the polymer thread – is decomposed. The result is a channel surrounded by real glass.

Original publication:
Kotz, F., Risch, P., Arnold, K. et al., Rapp, B.E. (2019): Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. In: Nature Communication. DOI: 10.1038/s41467-019-09497-z

Contact:
Prof. Dr. Bastian E. Rapp
Department of Microsystems Engineering
University of Freiburg
Tel.: 0761/203-7351
E-Mail: bastian.rapp@imtek.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2019/hollow-structures-in-3d...

Nicolas Scherger | idw - Informationsdienst Wissenschaft

More articles from Process Engineering:

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht NIST research sparks new insights on laser welding
02.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>