Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel from market waste

01.02.2012
Mushy tomatoes, brown bananas and overripe cherries – to date, waste from wholesale markets has ended up on the compost heap at best. In future it will be put to better use: Researchers have developed a new facility that ferments this waste to make methane, which can be used to power vehicles.

Drivers who fill up with natural gas instead of gasoline or diesel spend less on fuel and are more environmentally friendly. Natural gas is kinder on the wallet, and the exhaust emissions it produces contain less carbon dioxide and almost no soot particles. As a result, more and more motorists are converting their gasoline engines to run on natural gas. But just like oil, natural gas is also a fossil fuel, and reserves are limited.


This plant in Stuttgart makes biogas out of waste from wholesale markets. © Fraunhofer IGB

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart have now developed an alternative: They have found a way to obtain this fuel not from the Earth’s precious reserves of raw materials, but from fruit and vegetable waste generated by wholesale markets, university cafeterias and canteens. Fermenting this food waste produces methane, also known as biogas, which can be compressed into high-pressure cylinders and used as fuel.

In early 2012, the researchers will begin operating a pilot plant adjacent to Stuttgart’s wholesale market. The facility uses various microorganisms to generate sought-after methane from the food waste in a two-stage digestion process that lasts just a few days. “The waste contains a lot of water and has a very low lignocellulose content, so it’s highly suitable for rapid fermentation,” says Dr.-Ing. Ursula Schließmann, head of department at the IGB. But it still presents a challenge, because its precise composition varies every day. Sometimes it has a high proportion of citrus fruits, while other times there are more cherries, plums and lettuce. On days with a higher citrus fruit content, the researchers have to adjust the pH value through substrate management, because these fruits are very acidic. “We hold the waste in several storage tanks, where a number of parameters are automatically calculated – including the pH value. The specially designed management system determines exactly how many liters of waste from which containers should be mixed together and fed to the microorganisms,” explains Schließmann. It is vital that a correct balance be maintained in the plant at all times, because the various microorganisms require constant environmental conditions to do their job.

Another advantage of the new plant lies in the fact that absolutely everything it generates can be utilized; the biogas, the liquid filtrate, and even the sludgy residue that cannot be broken down any further. A second sub-project in Reutlingen comes into its own here, involving the cultivation of algae. When the algae in question are provided with an adequate culture medium, as well as carbon dioxide and sunlight, they produce oil in their cells that can be used to power diesel engines. The filtrate water from the biogas plant in Stuttgart contains sufficient nitrogen and phosphorus to be used as a culture medium for these algae, and the reactor facility also provides the researchers with the carbon dioxide that the algae need in order to grow; while the desired methane makes up around two thirds of the biogas produced there, some 30 percent of it is carbon dioxide. With these products put to good use, all that is left of the original market waste is the sludgy fermentation residue, which is itself converted into methane by colleagues at the Paul Scherrer Institute in Switzerland and at the Karlsruhe Institute of Technology.

Others involved in this network project, which goes by the name of ETAMAX, include energy company EnBW Energie Baden-Württemberg and Daimler AG. The former uses membranes to process the biogas generated in the market-place plant, while the latter supplies a number of experimental vehicles designed to run on natural gas. The five-year project is funded to the tune of six million euros by the German Federal Ministry of Education and Research (BMBF). If all the different components mesh together as intended, it is possible that similar plants could in future spring up wherever large quantities of organic waste are to be found. Other project partners are the Fraunhofer Institute for Process Engineering and Packaging IVV in Freising, FairEnergie GmbH, Netzsch Mohnopumpen GmbH, Stulz Wasser- und Prozesstechnik GmbH, Subitec GmbH und the town Stuttgart.

Dr.-Ing. Ursula Schließmann | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/february/fuel-from-market-waste.html

Further reports about: Ferchau Engineering Fuel cells IGB carbon dioxide natural gas raw material

More articles from Process Engineering:

nachricht Design treatment of advanced metals producing better sculpting
08.03.2019 | Purdue University

nachricht Laser Processes for Multi-Functional Composites
18.02.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>