Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy- and resource-efficient laser-based functionalizing of temperature-sensitive substrates

18.03.2013
As ever more is being demanded of the surfaces of components and parts, functional coatings are turning into a key technology for the 21st century.

Because conventional coating processes are increasingly coming up against their technological limits and are often too costly, the Fraunhofer Institute for Laser Technology ILT developed a resource-efficient process for laser-based functionalizing of nano- and microparticle materials. As well as being suitable for inline applications, this process is marked by a high degree of flexibility and energy efficiency, while also allowing gentle processing of temperature-sensitive substrates.


Coated bearing and engine components.
Picture source: Fraunhofer ILT. Aachen/Volker Lannert


Conductor paths on glass substrate.
Picture source: Fraunhofer ILT. Aachen

Whether it is transparent conductive layers, conductor paths on semiconductors, anti-reflective surfaces on displays, self-cleaning layers on highly transparent glass, or corrosion, scratch and wear protection layers on components subject to high mechanical stress: in almost every area of industrial manufacturing, there is a great need for functional layers to optimize the surface properties of all sorts of components.

Industrially established processes for the production of high-performance coatings tend to employ vacuum coating processes. But these are costly, as they require elaborate systems technology and due to the required batch processing. More affordable processes, such as electroplating or flame spraying, are either applicable only to certain classes of substrate or else display major drawbacks in terms of the layer characteristics they produce. Coating temperature-sensitive substrates is a particularly thorny challenge in this regard.

Energy-efficient coating of temperature-sensitive substrates

Scientists at Fraunhofer ILT, working with industry partners, have succeeded in developing a resource-efficient laser-based surface functionalization process. This process combines wet-chemical coating processes with a laser process for subsequent functionalizing of the applied material. For example, when coating a glass, plastic or semiconductor substrate, an indium tin oxide (ITO)-nanodispersion is printed onto the component using an inkjet process.

Next, a galvo scanner is used to guide a focused laser beam over the surface to be processed. Laser processing significantly increases the conductivity of the ITO layer, while putting the substrate under far less thermal stress and consuming far less energy than conventional furnace-based coating processes. The new laser-based coating process enables the gentle coating of substrates with a low temperature stability and thereby widens the scope of wet-chemical coating processes significantly.

Locally selective deposition saves on material

Using conventional processes to achieve a locally selective coating of surfaces is not possible or prohibitively expensive in most cases. Functional considerations dictate that any surplus material must be subsequently removed, sometimes using elaborate processes, and this results in an enormous cost disadvantage. In contrast, the fact that laser processes can be controlled with spatial and temporal precision means they are able to functionalize coating materials in exactly the right places on the component and with no wastage.

Suitability for inline applications

A further challenge in functionalizing surfaces is how to integrate the coating process into existing production lines. Conventional processes for a thermal post-treatment (e.g. furnace-based processes) cannot be easily integrated into production lines at low costs. Fraunhofer ILT’s laser coating process poses no such problems, since the printing and laser processes it features are ideal for inline applications. This saves manufacturers a huge amount of time and money.

Applications

Fraunhofer ILT’s laser-based coating process can be tailored to meet a wide variety of coating needs. Spatial adaption to the substrate geometry is done by the precise control of the laser intensity distribution. Furthermore the application of pulsed laser beams enables the precise temporal control. Besides creating conductor paths on substrates made of glass, silicon or polymers such as polyethylene terephthalate (PET), it can for instance also be used to apply ceramic corrosion and wear protection layers of zirconium dioxide onto hardened steel. This process is of particular relevance to automotive manufacturing, in which several million components must be coated each year so they can withstand high levels of static and dynamic stress as well as extremes of temperature.

Fraunhofer ILT at Hannover Messe

Our experts will be in Hannover on the joint IVAM booth C50.13 in hall 17 of Hannover Messe from April 8-12, 2013 to present various coated exhibits that highlight the breadth of applications for thin film processing.

Contacts:

Dipl.-Phys. Dominik Hawelka
Group Thin Film Processing
Phone +49 241 8906-676
dominik.hawelka@ilt.fraunhofer.de
Dr. Jochen Stollenwerk
Head of the Group Thin Film Processing
Phone +49 241 8906-411
jochen.stollenwerk@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>