Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient reactor dismantling by laser beam cutting?

05.02.2019

Can laser beam cutting underwater be used for efficient reactor dismantling? This question will be investigated by scientists of the Laser Zentrum Hannover e.V. (LZH) within the scope of the AZULa project. In a feasibility study, they develop a laser beam cutting process and construct a compact cutting head for use in a radiologically activated and contaminated underwater environment.

This new system is supposed to enable the direct dismantling of nuclear facilities (reactor pressure vessels). Laser beam cutting offers significant advantages compared to conventional cutting methods, such as water jet cutting or sawing techniques.


Underwater laser cutting offers enormous potential for the dismantling of reactor vessels.

Photo: LZH


Less contaminated secondary materials through an efficient laser cutting process.

Photo: LZH

Above all, the binding of the kerf material on the exit side is a major advantage of the laser process. The expense for the final cleaning of the water basin floor is significantly reduced, as the amount of secondary or technology waste is significantly lower compared to water jet or sawing techniques.

The disposal of this waste is time-consuming and costly. In addition, sawing techniques are prone to jamming of the tool. This cannot occur with laser beam cutting. Thus, the process times could be shortened. The laser beam cutting would therefore represent a much cheaper alternative for the dismantling of the reactor components.

About AZULa:

The project "Automated separation of reactor pressure vessel installations using underwater laser technology" (AZULa) is carried out together with the Orano GmbH. AZULa is sponsored by the Federal Ministry of Education and Research (BMBF) under grant number 15S9408 by the project coordinator Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH (GRS).

There are two figures for this press release.

Wissenschaftliche Ansprechpartner:

Laser Zentrum Hannover e.V.
Dipl.-Biol. Lena Bennefeld
Abteilung Kommunikation
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-238
Fax: +49 511 2788-100
E-mail: l.bennefeld@lzh.de
Internet: www.lzh.de

Lena Bennefeld | Laser Zentrum Hannover e.V.

Further reports about: GRS Laser Laser Zentrum Hannover laser beam laser technology reactor water jet

More articles from Process Engineering:

nachricht Adhesive Process Developed for Shingle Cell Technology
09.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Seawater turns into freshwater through solar energy: A new low-cost technology
08.01.2019 | Politecnico di Torino

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Invisible tags: Physicists at TU Dresden write, read and erase using light

A team of physicists headed by Prof. Sebastian Reineke of TU Dresden developed a new method of storing information in fully transparent plastic foils. Their innovative idea was now published in the renowned online journal “Science Advances”.

Prof. Reineke and his LEXOS team work with simple plastic foils with a thickness of less than 50 µm, which is thinner than a human hair. In these transparent...

Im Focus: IT in cars: Computers on standby

In the future, cars will exchange data via radio and warn each other about obstacles and accidents. There are currently various radio standards in existence to allow this. However, it is almost impossible to compare them, because the requisite hardware is not yet on the market. To address this lack, researchers at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI have developed a software system that will enable users to analyze the future wireless technology. For manufacturers, this is an ideal solution for testing interesting radio applications at an early stage.

Slowly but surely, the automobile is developing into the autonomous vehicle, as new functions are added with each new generation. Proximity radars are by now...

Im Focus: Making ultrafast lasers faster

Lasers with ultrashort pulses in the picosecond and femtosecond range are often referred to as ultrafast lasers. They are known for their ultra-precise ablation and cutting results. Unfortunately, processing with such lasers takes time. To address this issue, a new research project, funded by the European Commission, aims to make material processing with ultrafast lasers up to a hundred times faster.

Ultrashort pulsed (USP) or ultrafast lasers can do something very unique: They ablate almost any material without causing a thermal load of the adjacent...

Im Focus: New analysis methods facilitate the evaluation of complex engineering data

A further increase in the performance of supercomputers is expected over the next few years. So-called exascale computers will be able to deliver more precise simulations. This leads to considerably more data. Fraunhofer SCAI develops efficient data analysis methods for this purpose, which provide the engineer with detailed insights into the complex technical contexts.

Simulations on supercomputers answer important industrial questions, such as how air flows behave in air conditioning systems, on rotor blades or for entire...

Im Focus: Researchers wild about zigzags

Breakthrough in graphene research: large, stable pieces of graphene produced with unique edge pattern

Graphene is a promising material for use in nanoelectronics. Its electronic properties depend greatly, however, on how the edges of the carbon layer are formed.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

 
Latest News

Efficient reactor dismantling by laser beam cutting?

05.02.2019 | Process Engineering

The human factor in artificial intelligence

05.02.2019 | Information Technology

Argonne researchers develop new method to reduce quantum noise

05.02.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>