Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight

16.01.2020

Two INRS teams join forces and develop a new ecological process to degrade atrazine

Atrazine is one of the most widely used pesticides in North America. Researchers at the Institut National de la Recherche Scientifique (INRS) have developed a new method to degrade it that combines a new nanostructured material and sunlight.


Magnetron-sputtering based plasma reactor used for the preparation of the photoelectrodes of titanium oxide co-doped with nitrogen and tungsten.

Credit: My Ali El Khakani, INRS

Atrazine is found throughout the environment, even in the drinking water of millions of people across the country. Conventional water treatments are not effective in degrading this pesticide. Newer processes are more effective, but use chemicals that can leave toxic by-products in the environment.

Professor My Ali El Khakani, an expert in nanostructured materials, and Professor Patrick Drogui, a specialist in electrotechnology and water treatment, have joined forces to develop a new ecological degradation process for atrazine that is as chemical-free as possible.

"By working synergistically, we were able to develop a water treatment process that we would never have been able to achieve separately. This is one of the great added values of inter disciplinarity in research," says Professor El Khakani, lead author of the study, whose results are published today in the journal Catalysis Today.

The researchers use an existing process, called photoelectro-catalysis or PEC, which they have optimized for the degradation of atrazine. The process works with two photoelectrodes (light-sensitive electrodes) of opposite charges. Under the effect of light and an electrical potential, it generates free radicals on the surface of the photoelectrodes.

Those radicals interact with atrazine molecules and degrade them. "The use of free radicals is advantageous because it does not leave toxic by-products as chlorine would do. They are highly reactive and unstable. As their lifetime is very short they tend to disappear quickly," explains Professor Drogui, who is a co-author of the study.

The materials' challenges

To make photoelectrodes (light-sensitive electrodes), Professor El Khakani has chosen titanium oxide (TiO2), a material that is very abundant, chemically stable, and used in many applications including white pigment in paints or sunscreens. Usually, this semiconducting material converts the light energy provided by UV rays into active charges.

In order to take advantage of the entire solar spectrum, i.e. visible light in addition to UV, Professor El Khakani had to make the TiO2 films sensitive to visible sunlight. To this end, his team modified titanium oxide on an atomic scale by incorporating nitrogen and tungsten atoms using a plasma process. This doping reduces the photon energy required to trigger PEC in these novel photoelectrodes.

Since the PEC process is genuinely a surface phenomenon, the treatment of a large volume requires a large surface area of the photoelectrodes. For this, Professor El Khakani's team exploited to the advantages of nanostructuring the surface of photoelectrodes.

"Instead of having a flat surface, imagine sculpting it on the nanoscale to create valleys and mountains. This increases the active surface available without changing the physical surface. This is called nanostructuring. Thus, the active surface is artificially increased by several thousand times compared to the physical surface. With 1 g of material, active surface areas between 50 and 100 m2 can be achieved--that's about the surface of an apartment!", says Professor El Khakani.

New process efficiency and its limits

Once the photoelectrodes were developed and integrated into a PEC reactor, Professor Drogui's team optimized the process. His team first used samples of demineralized water to which atrazine was added. PEC with the photoelectrode eliminated about 60 percent of the pesticide after 300 minutes of treatment.

Researchers then moved on to real samples of water collected from the Nicolet River (QC, Canada) near areas of intensive corn and soybean agricultures where herbicides are often used.

When using actual water samples, only 8 percent of the atrazine was degraded initially. This low percentage is due to the presence of suspended particles that prevent much of the light from reaching the photoelectrode.

In addition, the species present in the solution can attach to the electrode thus reducing its active area. Capitalizing on its expertise in water decontamination, Professor Drogui's team carried out pretreatments based on coagulation and filtration of certain species before applying the PEC approach again. They then succeeded in degrading 38 to 40 percent of atrazine in the real samples.

The treatment efficiency remains relatively low compared to synthetic water because real water contains bicarbonates and phosphates that trap free radicals and prevent them from reacting with atrazine. "Pre-treatment by chemical coagulation helps remove phosphates, but not bicarbonates. Calcium could be added to precipitate them, but we want to minimize the use of chemicals," says Professor Drogui.

According to the authors, their new optimized PEC could be used as a tertiary treatment, after removing suspended particles and coagulable species. However, a pre-industrial demonstration stage is required before thinking about large-scale use. Finally, their process has been used to degrade atrazine, but the two teams continue to work together to address other emerging pollutants and antibiotic residues in water.

###

About the study

Photo-electrocatalytic oxidation of atrazine using sputtured deposited TiO2:

WN photoanodes under UV/visible light, by Simon Komtchou, Nazar Delegan, Ahmad Dirany, Patrick Drogui, Didier Robert et My Ali El Khakani, was published in Catalysis Today. This research was supported by funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec--Nature et technologies (FRQNT) through their strategic network Plasma-Québec. DOI: https://doi.org/10.1016/j.cattod.2019.04.067

About the INRS

The Institut National de la Recherche Scientifique (INRS) is the only institution in Québec dedicated exclusively to graduate level university research and training. The impacts of its faculty and students are felt around the world. INRS proudly contributes to societal progress in partnership with industry and community stakeholders, both through its discoveries and by training new researchers and technicians to deliver scientific, social, and technological breakthroughs in the future.

For further information:

Audrey-Maude Vézina,
Communications, INRS,
418 687-6403 (office),
418-254-2156 (cell),
audrey-maude.vezina@inrs.ca

Media Contact

Julie Robert, Press Information Officer, INRS
julie.robert@inrs.ca
514-971-4747

 @Inrsciences

http://www.inrs.ca/ 

Julie Robert, Press Information Officer, INRS | EurekAlert!
Further information:
http://www.inrs.ca/english/actualites/decontaminating-pesticide-polluted-water-using-engineered-nanomaterial
http://dx.doi.org/10.1016/j.cattod.2019.04.067

More articles from Process Engineering:

nachricht Roll-to-roll processes: Network R2RNet bundles expertise for the continuous functionalization of surfaces
10.06.2020 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Mass production of individualized products
02.06.2020 | Fraunhofer Institute for Electronic Nano Systems ENAS

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>