Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cost-saving Laser-based Process for Manufacturing Free-form Optics

12.04.2012
There is a growing demand for non-spherical glass optics. Currently, these optical elements – for example lenses for cameras or multifocal glasses – are still very costly to manufacture.
The Fraunhofer Institute for Laser Technology ILT has developed a process for manufacturing optical glass components, which should be particularly suitable for the cost-effective production of aspheres and free-form optics. With this procedure, engineers will be able to produce nearly every surface geometry imaginable in the future.

In optical systems such as headlights, projectors, camera lenses and lenses for glasses, optics ensure that light is focused as well as significantly determining image quality due to their surface form and finish quality. With commonly used spherical optics, the risk of aberration typically is reduced through combining several optics in a single optical system. However, this approach also increases the weight and size of the optical system. By using non-spherical lenses, whose surface form deviates from the spherical curvature of a spherical lens, engineers can effectively minimize such aberrations. This way, two or more conventional spherical optics can be replaced by one asphere and enable higher luminous efficacy. In addition, the dimensions and the weight of the overall optical system can be reduced.
Until now, small quantities of non-spherical optics have been produced through a number of expensive and time-consuming grinding and polishing steps. While the blank pressing of optics represents one possible alternative, it, however, is only economical for larger quantities. A young research team at the Fraunhofer ILT has developed a new process for individual manufacturing of apheres and free-form optics within the scope of the project “Forming and Polishing of Optical Glass Components by Ablation and Remelting with Laser Radiation” (or FoPoLas).

Ablating, Polishing, Correcting

Sebastian Heidrich and his team have been able to produce non-spherical and free-form surfaces with different degrees of curvature out of a quadratic piece of fused silica. In order to do this, they have combined different processing techniques into one process chain: Firstly, a CO2 laser beam heats the material to over 2,230°C, the evaporation temperature of fused silica. This way, the unnecessary material is evaporated selectively and ablated. According to computer generated data, nearly any surface form desired can be produced. In a following step, CO2 laser radiation heats the surface of the component again to near the evaporation temperature so that the viscosity of the uppermost material layer is changed. It becomes fluid and its roughness is reduced on account of the surface tension. The material remains polished once it has cooled. After this laser polishing step, remaining form defects shall be corrected with laser-based precision ablation in the future.

High Economy also for Small Series Production

This process chain is directed primarily at manufacturers of individualized, non-spherical optics. Since the desired surface form is produced based on computer data, it can be changed without extensive retooling. In comparison to conventional manufacturing methods, the use of this process chain could shorten the time it takes to produce optical glass components presumably by a factor of ten. For complex free-form surfaces, this factor can even be much higher. This would mean an enormous reduction in costs and high flexibility for the production of small to medium lot sizes. The process steps can also be used separately, for example, to polish the inside of drill holes, starting from a diameter of several millimeters.

Currently the scientists are optimizing the individual steps of the process chain. Before the process can be applied in the industry, the precision of the ablation process and the surface quality of the polishing process have to be increased. In addition, an appropriate measurement technology has to be developed for form detection, in order to attain suitable optical quality of the manufactured glass components.
On May 11, experts will be presenting the process within the scope of the International Laser Technology Fair AKL’12 in the laser plant park of the Fraunhofer ILT. Interested parties can find further information on this at: www.lasercongress.org.

Contacts at the Fraunhofer ILT

Dipl.-Ing. Sebastian Heidrich
Polishing
Telephone +49 241 8906-645
sebastian.heidrich@ilt.fraunhofer.de

Dr. Edgar Willenborg
Polishing
Telephone +49 241 8906-213
edgar.willenborg@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Telephone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>