Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper oxide photocathodes: laser experiment reveals location of efficiency loss

10.05.2019

Copper oxide (Cu2O) is a very promising candidate for future solar energy conversion: as a photocathode, the copper oxide (a semiconductor) might be able to use sunlight to electrolytically split water and thus generate hydrogen, a fuel that can chemically store the energy of sunlight.

Copper oxide has a band gap of 2 electron volts, which matches up very well with the energy spectrum of sunlight. Perfect copper oxide crystals should theoretically be able to provide a voltage close to 1,5 volts when illuminated with light.


A green laser pulse initially excites the electrons in the Cu2O; just fractions of a second later, a second laser pulse (UV light) probes the energy of the excited electron.

Credit: M. Kuensting/HZB

The material would thus be perfect as the top-most absorber in a photoelectrochemical tandem cell for water splitting. A solar-to-hydrogen energy conversion efficiency of up to 18 per cent should be achievable.

However, the actual values for the photovoltage lie considerably below that value, insufficient to make copper oxide an efficient photocathode in a tandem cell for water splitting. Up to now, loss processes near the surface or at boundary layers have been mainly held responsible for this.

A team at the HZB Institute for Solar Fuels has now taken a closer look at these processes. The group received high-quality Cu2O single crystals from colleagues at the renowned California Institute of Technology (Caltech), then vapour-deposited an extremely thin, transparent layer of platinum on them.

This platinum layer acts as a catalyst and increases the efficiency of water splitting. They examined these samples in the femtosecond laser laboratory (1 fs = 10-15 s) at the HZB to learn what processes lead to the loss of charge carriers and in particular whether these losses occur in the interior of the single crystals or at the interface with the platinum.

A green laser pulse initially excited the electrons in the Cu2O; just fractions of a second later, a second laser pulse (UV light) measured the energy of the excited electron. The team was then able to identify the main mechanism of photovoltage losses through this time-resolved two-photon photon emission spectroscopy (tr-2PPE).

"We observed that the excited electrons were very quickly bound in defect states that exist in large numbers in the band gap itself", reports first author Mario Borgwardt, who is now continuing his work as a Humboldt fellow at Lawrence Berkeley National Laboratory in the USA.

The coordinator of the study, Dennis Friedrich, explains: "This happens on a time scale of less than one picosecond (1 ps = 10-12 s), i.e. extremely fast, especially compared to the time interval charge carriers need to diffuse from the interior of the crystalline material to the surface."

"We have very powerful experimental methods at the femtosecond laser laboratory of the HZB for analysing energy and dynamics of photo-excited electrons in semiconductors. We were able to show for copper oxide that the losses hardly occur at the interfaces with platinum, but instead in the crystal itself", says Rainer Eichberger, initiator of the study and head of femtosecond spectroscopy lab.

"These new insights are our first contribution to the UniSysCat Excellence Cluster at the Technische Universität Berlin, in which we are a partner", emphasises Roel van de Krol, who heads the HZB Institute for Solar Fuels. UniSysCat focusses on catalytic processes that take place over very diverse time scales: while charge carriers react extremely quickly to excitations by light (femtoseconds to picoseconds), chemical processes such as (electro)catalysis require many orders of magnitude more time (milliseconds). An efficient photochemical conversion requires that both processes be optimised together. The current results that have now been published in the renowned journal Nature Communications are an important step in this direction.

Antonia Roetger | EurekAlert!
Further information:
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=20480;sprache=en;seitenid=1
http://dx.doi.org/10.1038/s41467-019-10143-x

More articles from Process Engineering:

nachricht Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight
16.01.2020 | Institut national de la recherche scientifique - INRS

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

The synthesis of bio-based high-performance polyamide from biogenic residues: A real alternative to crude oil

27.01.2020 | Life Sciences

Superfast insights into cellular events

27.01.2020 | Life Sciences

The 'place' of emotions

27.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>