Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XENON1T Experimental data establishes most stringent limit on dark matter

30.05.2018

Analysis scours 276 days of data from world's most sensitive detector

Experimental results from the XENON1T dark matter detector limit the effective size of dark matter particles to 4.1X10-47 square centimeters--one-trillionth of one-trillionth of a centimeter squared--the most stringent limit yet determined for dark matter as established by the world's most sensitive detector.


Experimental results from the XENON1T dark matter detector limit the effective size of dark matter particles to 4.1X10-47 square centimeters--one-trillionth of one-trillionth of a centimeter squared--the most stringent limit yet determined for dark matter as established by the world's most sensitive detector.

Credit: XENON Collaboration

The results, presented Monday in a seminar in Italy at the Gran Sasso Underground Laboratory (LNGS), were produced using an active target volume of 1,300 kilograms of Xenon, the first search for dark matter that has monitored the equivalent of one ton of xenon for an entire year.

"We now have the tightest limit for what is known as 'the WIMP-nucleon cross section,' which is a measure of the effective size of dark matter, or how strongly it interacts with normal matter," said Ethan Brown, a member of the XENON Collaboration, and assistant professor of physics, applied physics, and astronomy at Rensselaer Polytechnic Institute. "With these results, we have now tested many new theoretical models of dark matter and placed the strongest constraints on these models to date."

Dark matter is theorized as one of the basic constituents of the universe, five times more abundant than ordinary matter. But because the dark matter particles known as "weakly interacting massive particles," or "WIMPs," cannot be seen and seldom interact with ordinary matter, their existence has never been confirmed.

Several astronomical measurements have corroborated the existence of dark matter, leading to a worldwide effort to directly observe dark matter particle interactions with ordinary matter. Up to the present, the interactions have proven so feeble that they have escaped direct detection, forcing scientists to build ever-more-sensitive detectors.

Since 2002, the XENON Collaboration, incorporating 165 scientists from 12 countries, has operated three successively more sensitive liquid xenon detectors in LNGS in Italy, and XENON1T is its most powerful venture to date and the largest detector of its type ever built. Particle interactions in liquid xenon create tiny flashes of light, and the detector is intended to capture the flash from the rare occasion in which a dark matter particle collides with a xenon nucleus.

The results analyze 279 days of data, according to Elena Aprile, a professor at Columbia University and project lead. During that time, only two background events were expected in the innermost, cleanest region of the detector. However, no events were detected, suggesting dark matter particles must be even smaller than previously thought. A portion of the data analysis was conducted at Rensselaer, as scientists from collaborating institutes around the world convened at the Institute late in 2018 to review data and finalize analysis routines that would eliminate irrelevant information from the collected data.

The sensitivity of the detector is a function of its size and its "silence." Although dark matter interactions are rare, interactions with other forms of matter are common, and a sensitive detector is designed to minimize those interactions. To shield it from natural radioactivity in the cavern, the detector (a so-called Liquid Xenon Time Projection Chamber) sits within a cryostat submersed in a tank of water. A mountain above the underground laboratory further shields the detector from cosmic rays.

Even with shielding from the outside world, contaminants seep into the xenon from the materials used in the detector itself and, among his contributions, Brown is responsible for a sophisticated purification system that continually scrubs the xenon in the detector. As the size of detectors have grown, so has the complexity of the purification system--not only is there more xenon to clean, but it must be kept cleaner so that light and charge may move through the greater volume of the detector. In the current phase, Brown said his team "scaled up, adding more pumps and more purifiers" to the system.

"Our work has maintained a high level of purity for the largest quantity of xenon over the longest period of time ever," said Brown. "It's an accomplishment that allows other experiments to build on the performance of this purification system."

In the next phase, Brown will introduce a new solution, a newly designed pump built with ultra clean parts in his laboratory at Rensselaer in collaboration with researchers at Stanford and at Muenster University in Germany. Where the current pumps contribute one-third to one-half of the total radon in the experiment, the new pumps will be essentially radon-free, removing one of the largest contributions to background.

Research on dark matter fulfills The New Polytechnic, an emerging paradigm for higher education which recognizes that global challenges and opportunities are so great they cannot be adequately addressed by even the most talented person working alone. Rensselaer serves as a crossroads for collaboration -- working with partners across disciplines, sectors, and geographic regions -- to address complex global challenges, using the most advanced tools and technologies, many of which are developed at Rensselaer. Research at Rensselaer addresses some of the world's most pressing technological challenges -- from energy security and sustainable development to biotechnology and human health. The New Polytechnic is transformative in the global impact of research, in its innovative pedagogy, and in the lives of students at Rensselaer.

###

About Rensselaer Polytechnic Institute

Rensselaer Polytechnic Institute, founded in 1824, is America's first technological research university. For nearly 200 years, Rensselaer has been defining the scientific and technological advances of our world. Rensselaer faculty and alumni represent 86 members of the National Academy of Engineering, 18 members of the National Academy of Sciences, 25 members of the American Academy of Arts and Sciences, 8 members of the National Academy of Medicine, 8 members of the National Academy of Inventors, and 5 members of the National Inventors Hall of Fame, as well as 6 National Medal of Technology winners, 5 National Medal of Science winners, and a Nobel Prize winner in Physics. With 7,000 students and nearly 100,000 living alumni, Rensselaer is addressing the global challenges facing the 21st century--to change lives, to advance society, and to change the world. To learn more, go to http://www.rpi.edu.

Media Contact

Mary Martialay
martim12@rpi.edu

 @rpinews

http://news.rpi.edu/ 

Mary Martialay | EurekAlert!
Further information:
https://news.rpi.edu/content/2018/05/29/xenon1t-experimental-data-establishes-most-stringent-limit-dark-matter

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>