Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wrangling Flow to Quiet Cars and Aircraft

22.10.2013
"Serpentine plasma actuators" described in Journal of Applied Physics may reduce noise and drag and increase fuel efficiency for future land and air vehicles

Plasmas are a soup of charged particles in an electric field, and are normally found in stars and lightning bolts. With the use of high voltage equipment, very small plasmas can be used to manipulate fluid flows.


M. Riherd, APRG

Comparison of turbulent flow structures over an airfoil when a pulsed linear (left) and a serpentine (right) plasma actuator are used to control the flow.

In recent years, the development of devices known as plasma actuators has advanced the promise of controlling flows in new ways that increase lift, reduce drag and improve aerodynamic efficiencies -- advances that may lead to safer, more efficient and more quiet land and air vehicles in the near future.

Unlike other flow control devices, plasma actuator geometries can be easily modified. Enter the serpentine shape, courtesy of the Applied Physics Research Group (APRG), a University of Florida research team in Gainesville that has been developing this and other types of novel plasma actuators for several years. The serpentine's sinuous, ribbon-like curves appear to impart greater levels of versatility than traditional geometries used in plasma flow control devices, according to Mark Riherd, a doctoral candidate working under Subrata Roy, the founding director of APRG.

"Our serpentine device will have applications in reducing drag-related fuel costs for an automobile or an aircraft, minimizing the noise generated when flying over populated areas, mixing air-fuel mixtures for lean combustion, and enhancing heat transfer by generating local turbulence," Riherd said.

In a report appearing in the Journal of Applied Physics, which is produced by AIP Publishing, the team validated the complex, three-dimensional flow structures induced by their serpentine plasma actuators by comparing numerical results with recent physical experiments in non-moving air. They then simulated the effects of the actuators in a non-turbulent boundary layer and over a small aircraft wing. Further tests are needed, but early results suggest serpentine flow wrangling may improve transportation efficiencies.

"This may result in significant weight and fuel savings for future aircraft and automobiles, improving energy efficiency all around," Riherd said.

The article, "On Using Serpentine Geometry Plasma Actuators for Flow Control" by Mark Riherd and Subrata Roy appears in the Journal of Applied Physics. See: http://dx.doi.org/10.1063/1.4818622

ABOUT THE JOURNAL
The Journal of Applied Physics, produced by AIP Publishing, is an influential international journal featuring significant new experimental and theoretical results of applied physics research. See: http://jap.aip.org

Jason Socrates Bardi | Newswise
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Tel Aviv University-led team discovers new way supermassive black holes are 'fed'
15.01.2019 | American Friends of Tel Aviv University

nachricht Arbitrary quantum channel simulation for a superconducting qubit
14.01.2019 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>