Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World Record for One-Loop Calculations

07.12.2011
Physicists at Mainz University significantly improve the calculation method for scattering experiments in particle physics

Scientists at Johannes Gutenberg University Mainz (JGU) have set a new record for the calculation of scattering amplitudes. This kind of calculation is used to predict the outcome of accelerator experiments in which high-energy particles collide with one another.


This Feynman diagram illustrates the collision between an electron and positron (left), with their annihilation and the formation of a quark, an anti-quark, and five gluons (right).
Ill.: THEP, Mainz

However, the calculations become increasingly difficult the greater the number of orders the physicists wish to calculate. Professor Dr. Stefan Weinzierl's work group has now developed an algorithm which is far faster and requires less computing capacity than other algorithms. "We have made a huge leap forward and applied a completely new method allowing us to calculate far more than before," explains Weinzierl. He assumes that the new calculation method can be applied to both completed experiments in the Large Electron-Positron Collider (LEP), which was in operation at Geneva's CERN research center until the year 2000, as well as new experiments in the Large Hadron Collider (LHC).

The new algorithm allows, for instance, for the calculation of physical observables related to the collision of an electron with its antiparticle, the positron, during which a quark, an anti-quark, and gluons are created. For the first time ever, it has been possible to do a calculation with one loop and eight external particles – a new world record in theoretical high-energy physics.

Precision calculations in particle physics make use of the perturbation theory and the results can be displayed in what are called loop diagrams. The higher the number of external particles, the more difficult is the calculation. The algorithm now being used is a new and efficient method based on subtraction and numerical integration. The calculations are performed using a PC cluster system located at the Center of Data Processing at Mainz University. According to Weinzierl, the new method is not only applicable to electron-positron annihilation, but with slight modifications can also be used to calculate hadron-hadron collisions of the kind that occur in the LHC in Geneva. The theoretical physicists at Mainz University intend to investigate this aspect further in the near future.

Professor Dr. Stefan Weinzierl's work is part of the JGU Excellence Cluster Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA). The cluster has made it into the final selection round of Germany's Federal Excellence Initiative and has submitted a proposal for continued financing in the second round.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14739.php

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>