Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World first: Significant development in the understanding of macroscopic quantum behavior

15.07.2015

Researchers from Polytechnique Montréal and Imperial College London demonstrate the wavelike quantum behavior of a polariton condensate on a macroscopic scale and at room temperature

For the first time, the wavelike behaviour of a room-temperature polariton condensate has been demonstrated in the laboratory on a macroscopic length scale. This significant development in the understanding and manipulation of quantum objects is the outcome of a collaboration between Professor Stéphane Kéna-Cohen of Polytechnique Montréal, Professor Stefan Maier and research associate Konstantinos Daskalakis of Imperial College London. Their work has been published in the prestigious journal Physical Review Letters.


To produce the room-temperature condensate, the team of researchers from Polytechnique and Imperial College first created a device that makes it possible for polaritons - hybrid quasi-particles that are part light and part matter - to exist. The device is composed of a film of organic molecules 100 nanometres thick, confined between two nearly perfect mirrors. The condensate is created by first exciting a sufficient number of polaritons using a laser and then observed via the blue light it emits. Its dimensions can be comparable to that of a human hair, a gigantic size on the quantum scale.

Credit: Konstantinos Daskalakis, Imperial College London

Quantum objects visible to the naked eye

Quantum mechanics tells us that objects exhibit not only particle-like behaviour, but also wavelike behaviour with a wavelength inversely proportional to the object's velocity. Normally, this behaviour can only be observed at atomic length scales. There is one important exception, however: with bosons, particles of a particular type that can be combined in large numbers in the same quantum state, it is possible to form macroscopic-scale quantum objects, called Bose-Einstein condensates.

These are at the root of some of quantum physics' most fascinating phenomena, such as superfluidity and superconductivity. Their scientific importance is so great that their creation, nearly 70 years after their existence was theorized, earned researchers Eric Cornell, Wolfgang Ketterle and Carl Wieman the Nobel Prize in Physics in 2001.

A trap for half-light, half-matter quasi-particles

Placing particles in the same state to obtain a condensate normally requires the temperature to be lowered to a level near absolute zero: conditions achievable only with complex laboratory techniques and expensive cryogenic equipment.

"Unlike work carried out to date, which has mainly used ultracold atomic gases, our research allows comprehensive studies of condensation to be performed in condensed matter systems under ambient conditions" explains Mr. Daskalakis. He notes that this is a key step toward carrying out physics projects that currently remain purely theoretical.

To produce the room-temperature condensate, the team of researchers from Polytechnique and Imperial College first created a device that makes it possible for polaritons - hybrid quasi-particles that are part light and part matter - to exist. The device is composed of a film of organic molecules 100 nanometres thick, confined between two nearly perfect mirrors. The condensate is created by first exciting a sufficient number of polaritons using a laser and then observed via the blue light it emits. Its dimensions can be comparable to that of a human hair, a gigantic size on the quantum scale.

"To date, the majority of polariton experiments continue to use ultra-pure crystalline semiconductors," says Professor Kéna-Cohen. "Our work demonstrates that it is possible to obtain comparable quantum behaviour using 'impure' and disordered materials such as organic molecules. This has the advantage of allowing for much simpler and lower-cost fabrication."

The size of the condensate is a limiting factor

In addition to directly observing the organic polariton condensate's wavelike behaviour, the experiment showed researchers that ultimately the condensate size could not exceed approximately 100 micrometres. Beyond this limit, the condensate begins to destroy itself, fragmenting and creating vortices.

Toward future polariton lasers and optical transistors

In a condensate, the polaritons all behave the same way, like photons in a laser. The study of room-temperature condensates paves the way for future technological breakthroughs such as polariton micro-lasers using low-cost organic materials, which are more efficient and require less activation power than conventional lasers. Powerful transistors entirely powered by light are another possible application.

The research team foresees that the next major challenge in developing such applications will be to obtain a lower particle-condensation threshold so that the external laser used for pumping could be replaced by more practical electrical pumping.

Fertile ground for studying fundamental questions

According to Professor Maier, this research is also creating a platform to facilitate the study of fundamental questions in quantum mechanics. "It is linked to many modern and fascinating aspects of many-body physics, such as Bose-Einstein condensation and superfluidity, topics that also intrigue the general public," he notes.

Professor Kéna-Cohen concludes: "One fascinating aspect, for example, is the extraordinary transition between the state of non-condensed particles and the formation of a condensate. On a small scale, the physics of this transition resemble an important step in the formation of the Universe after the Big Bang."

###

This research has received support from the Natural Sciences and Engineering Research Council of Canada (NSERC), The Leverhulme Trust, and the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom.

Reference

Daskalakis, K.-S., Maier, S.-A. & Kéna-Cohen, S. (2015). Physical Review Letters, Spatial Coherence and Stability in a Disordered Organic Polariton Condensate, 115(3), 035301. From

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.035301 Also available in open-access: http://arxiv.org/pdf/1503.01373v2

Interviews and information

Annie Touchette
Senior Advisor
Communications, Polytechnique Montréal
514 231-8133
annie.touchette@polymtl.ca

 @polymtl

http://www.polymtl.ca 

Annie Touchette | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>