Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017

For the first time, astronomers have succeeded in obtaining a map of the turbulent motions in the atmosphere of a star other than the Sun, thanks to an innovative technique that combines three telescopes at the European Southern Observatory (ESO) on Cerro Paranal located in northern Chile. The astronomer Keiichi Ohnaka at the Universidad Católica del Norte in Antofagasta, Chile, led the research. He and his partners Gerd Weigelt and Karl-Heinz Hofmann from the Max Planck Institute for Radio Astronomy in Bonn, Germany obtained unprecedented velocity-resolved images of the surface and the atmosphere of a distant star.

The team was able to measure the intensity (Figure 1) and velocity of the gas at each position over the surface and atmosphere of the red supergiant star Antares (Alpha Scorpii) at a distance of about 600 light years.


First image of Antares: stellar disk (yellow) with two brighter regions (white) and the extended atmosphere (blue). The red supergiant has a diameter 700 times larger than the diameter of our Sun.

K. Ohnaka et al. 2017, Nature 548, 310

“For the first time, we have succeeded in obtaining a two-dimensional map of the dynamics, that is, the motions in the atmosphere of a star other than the Sun. The observations were performed with ESO’s Very Large Telescope Interferometer (VLTI) and the AMBER beam combiner instrument. The gas velocity can be derived from shifts of spectral lines because of the Doppler effect“, explains Keiichi Ohnaka.

When stars approach the end of their life, they start to lose material from the surface and atmosphere— a process called mass loss. While red supergiant stars like Antares are known to be experiencing intense mass loss, it is still unknown how it occurs—actually a long-standing problem over half a century.

One of the best ways to investigate this process is to observe the dynamics of the gas—the motions and the velocity—close to the star. Some images of the surface of stars had been taken before, but only for a very limited number of cases and without information about the gas motions in the atmosphere.

Single telescopes are not able to resolve surface structures on stars other than our Sun. However, if one combines („interferes“) the light from several telescopes, the required high angular resolution can be obtained. This method is called interferometry.

“The achievable resolution is proportional to the distance between the individual telescopes”, explains Karl-Heinz Hofmann. “We used the AMBER beam combiner instrument of ESO’s Very Large Telescope Interferometer for our observations because it allows us to perform measurements with high spectral resolution and to measure velocities“.

“If we obtain maps of the gas motions at different heights throughout the atmosphere, we can obtain a three-dimensional picture of how the gas is moving in the atmosphere of stars,” emphasizes Keiichi Ohnaka. The team is already working on such a project, going from 2D to 3D, aiming at finally solving the mystery behind the mass-loss process.

The images of Antares provide new clues for understanding how this star loses mass. The team found out that the material is not spilling out in an ordered manner in Antares but the material is expelled in a random and turbulent manner.

“This interferometric imaging method allows us to study not only stars in late evolutionary stages, but also, for example, very young stars surrounded by circumstellar disks, in which planets can form, and even extragalactic objects”, concludes Gerd Weigelt. “In all these projects, it is of greatest importance to obtain both high angular resolution and high spectral resolution to study the velocity distribution in the gas.” In the future, the new VLTI instrument MATISSE will provide a unique opportunity to perform such observations in a wide wavelength range for the first time.

Original Paper:

Vigorous atmospheric motion in the red supergiant star Antares, K. Ohnaka, G. Weigelt & K.-H. Hofmann, 2017, Nature (August 17, 2017).

Contact:

Prof. Dr. Gerd Weigelt,
Head of Research Group Infrared Astronomy
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-243
E-mail: gweigelt@mpifr-bonn.mpg.de

Prof. Dr. Keiichi Ohnaka,
Instituto de Astronomía, Universidad Católica del Norte
Fon: +56 55 2355493
E-mail: k1.ohnaka@gmail.com

Dr. Karl-Heinz Hofmann,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-290
E-mail: khh@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2017/6

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>