Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To widen path to outer space, UF engineers build small satellite

17.11.2008
It’s not much bigger than a softball and weighs just 2 pounds.

But the “pico satellite” being designed and built in a University of Florida aerospace engineering laboratory may hold a key to a future of easy access to outer space — one where sending satellites into orbit is as routine and inexpensive as shipping goods around the world.

“Right now, the way satellites are built, they’re all large, one-of-a-kind and very expensive,” says Norman Fitz-Coy, an associate professor of mechanical and aerospace engineering and the lead investigator on the project. “Our idea is that you could mass produce these small satellites and launch 10 or 20 from a single launch vehicle.”

The satellite is the first ever built at UF and may be the first orbiting spacecraft to be built in Florida, said Peggy Evanich, director of space research programs at UF.

Fifty-one years ago, the former Soviet Union inaugurated the space race with the launch of Sputnik. Since then, satellites have transformed communications, navigation and climatology, as well as science and the military. But satellites remain large, ranging in size from basketball to school bus proportions; expensive, with costs typically in the hundreds of millions to billions of dollars; and slowly hand-built as one-of-a-kind devices, rather than speedily mass produced, Fitz-Coy said.

Scientists and engineers now hope to change that legacy.

“There is a national push to make satellites smaller so that you can provide cheaper and more frequent access to space,” he said.

As part of that push, the National Science Foundation this fall created the Advanced Space Technologies Research and Engineering Center at the UF College of Engineering. Headed by Fitz-Coy, the center will seek to develop “pico- and nano-class small satellites” that can be built and launched for as little as $100,000 to $500,000, according to the NSF. The UF center will receive NSF funding for five years for the research.

Fitz-Coy said small satellites are not anticipated to totally replace larger ones, but rather to complement them by adding new capabilities. For example, he said, “swarms” of small satellites could take multiple, distributed measurements or observations of weather phenomena, or the Earth’s magnetic fields, providing a more comprehensive assessment than is possible with a single satellite.

“People are looking toward these to not totally replace the big satellites but to supplement what the big satellites are doing,” he said.

He said the main impediment to designing small satellites is control: The smaller the satellite, the harder it is to manage its flight path and attitude, or orientation in space – for example, which directions its instruments point, a critical parameter in spacecraft design.

“It’s similar to you driving an SUV down the road or a sub-compact,” Fitz-Coy said, explaining that while inertia helps large satellites, it is not enough to keep small satellites on track and properly oriented. “The SUV is a lot more stable than the sub-compact.”

The goal of the UF satellite, nicknamed SwampSAT, is to test a new system designed to improve small satellites’ attitude control. Having precise control is particularly important for such satellites because they have to fly relatively close to Earth so that their weak communications signals can reach their targets, he said. Because of their proximity to Earth, their instruments must be precisely aimed.

“They need to be able to control their orientation and re-orient rapidly,” he said.

Fitz-Coy and about 12 undergraduate and graduate students began the project last year and hope to complete SwampSAT late this year or early next year, he said.

The cost is anticipated to be about $100,000, with a launch in 2009 – likely aboard an unmanned NASA rocket carrying other payloads as well. The satellite will fly at an altitude of between 600 and 650 kilometers, or from 373 to 404 miles, and will remain in orbit for several years, Fitz-Coy said.

A container that could be standardized for use in transporting the small satellites aboard the rocket also is being developed. As with the satellites themselves, the goal is mass production – to be able to transport satellites to outer space much the same way that ships and trucks transport goods around the terrestrial world now, Fitz-Coy said.

Norman Fitz-Coy | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht Kiel physicists discover new effect in the interaction of plasmas with solids
16.01.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Understanding insulators with conducting edges
16.01.2019 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

The pace at which the world’s permafrost soils are warming

16.01.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>