Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When electrons ride a wave

08.09.2017

Physicists at HZDR discover optimum conditions for laser plasma acceleration

Conventional electron accelerators have become an indispensable tool in modern research. The extremely bright radiation generated by synchrotrons, or free electron lasers, provides us with unique insights into matter at the atomic level. But even the smallest versions of these super microscopes are the size of a soccer field.


In a so-called target chamber, the light pulse of the high-performance laser DRACO hits a gas-jet. The aim is to accelerate electrons to almost the speed of light on a distance shorter than a pencil's width.

Credit: HZDR / F. Bierstedt

Laser plasma acceleration could offer an alternative: with a much smaller footprint and much higher peak currents it could be the basis for the next generation of compact light sources. So far, the challenge with laser accelerators has been to create a reliable and stable electron beam, which is the prerequisite for possible applications. Physicists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have now developed a method to increase both beam stability and quality.

The basic principle of laser acceleration seems quite simple: A bundled, ultra-strong laser beam hits a trace of gas, which instantly creates plasma - an ionized state of matter or, in other words, a whirling mix of charged particles. The power of the light pulse pushes electrons away from their parent ions, creating a sort of bubble-like structure with a strong electric field in the plasma.

This field, which the laser pulse drags behind itself like a stern wave, traps the electrons, accelerating them to nearly the speed of light. "These speedy particles allow us to generate x-rays," Dr. Arie Irman from the HZDR Institute of Radiation Physics explains the purpose of the procedure. "For instance, when we make these electron bundles collide with another laser beam, the impact generates bright, ultra-short x-ray flashes - an immensely valuable research tool for examining extreme states of matter."

Right Time + Right Place = Perfect Acceleration

The strength of the secondary radiation greatly depends on the particles' electrical current. The current, in turn, is mostly determined by the number of electrons fed into the process. Laser-powered acceleration therefore holds great potential, because it reaches significantly higher peak currents in comparison with the conventional method. However, as physicist Jurjen Pieter Couperus points out, the so-called beam loading effect kicks in:

"These higher currents create an electric self-field strong enough to superimpose and disturb the laser-driven wave, distorting thereby the beam. The bundle is stretched out and not accelerated properly. The electrons therefore have different energies and quality levels." But in order to use them as a tool for other experiments, each beam must have the same parameters. "The electrons have to be in the right place at the right time," summarizes Couperus, who is a Ph.D. candidate in Irman's team.

Together with other colleagues at the HZDR, the two researchers were the first to demonstrate how the beam loading effect can be exploited for improved beam quality. They add a bit of nitrogen to the helium at which the laser beam is usually directed.

"We can control the number of electrons we feed into the process by changing the concentration of the nitrogen," Irman explains. "In our experiments, we found out that conditions are ideal at a charge of about 300 picocoulomb. Any deviation from it - if we add more or fewer electrons to the wave - results in a broader spread of energy, which impairs beam quality."

As the physicists' calculations have shown, experiments under ideal conditions yield peak currents of about 50 kiloamperes. "To put this in context, only about 0.6 kiloamperes flow through the standard overhead line for a German high-speed train," Jurjen Pieter Couperus explains. He is confident that they can beat their own record: "Using our findings and a laser pulse in the petawatt range, which our high-intensity laser DRACO can achieve, we should be able to generate a high-quality electron beam with peak currents of 150 kiloamperes. That would exceed modern large-scale research accelerators by about two orders of magnitude." An achievement which the researchers from Dresden believe would pave the way for the next generation of compact radiation sources.

###

Publication: J. P. Couperus, R. Pausch, A. Köhler, O. Zarini, J. M. Krämer, M. Garten, A. Huebl, R. Gebhardt, U. Helbig, S. Bock, K. Zeil, A. Debus, M. Bussmann, U. Schramm, A. Irman: Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator, in Nature Communications, 2017 (DOI: 10.1038/s41467-017-00592-7)

For more information:
Dr. Arie Irman | Jurjen Pieter Couperus
Institute of Radiation Physics at HZDR
phone: +49 351 260-3043 | 3005
email: a.irman@hzdr.de | j.couperus@hzdr.de

Media contact:
Simon Schmitt | Science Editor
phone: +49 351 260-3400 | email: s.schmitt@hzdr.de

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) performs research in the fields of energy, health, and matter. We focus on answering the following questions:

  • How can energy and resources be utilized in an efficient, safe, and sustainable way?
  • How can malignant tumors be more precisely visualized, characterized, and more effectively treated?
  • How do matter and materials behave under the influence of strong fields and in smallest dimensions?

To help answer these research questions, HZDR operates large-scale facilities, which are also used by visiting researchers: the Ion Beam Center, the High-Magnetic Field Laboratory Dresden, and the ELBE Center for High-Power Radiation Sources. HZDR is a member of the Helmholtz Association and has five sites in Dresden, Freiberg, Grenoble, Hamburg and Leipzig with approximately 1,100 members of staff, of whom about 500 are scientists, including 150 Ph.D. candidates.

Media Contact

Simon Schmitt
s.schmitt@hzdr.de
49-351-260-3400

 @HZDR_Dresden

http://www.hzdr.de/db/Cms?pNid=

Simon Schmitt | EurekAlert!

Further reports about: Electrons HZDR Radiation acceleration laser beam nitrogen

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>