Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When electric fields make spins swirl

15.11.2018

First example of ferroelectrically tunable skyrmions brings new hope for next-generation magnetic memory devices

We are reaching the limits of silicon capabilities in terms of data storage density and speed of memory devices. One of the potential next-generation data storage elements is the magnetic skyrmion.


This study measured skyrmions in an ultra-thin material made of a ferromagnetic layer of strontium ruthenate (SrRuO3), overlaid with a ferroelectric layer of barium titanate (BaTiO3) and grown on a strontium titanate (SrTiO3) substrate. BaTiO3 is ferroelectric, meaning that it has a switchable and permanent electric polarization (), while SrRuO3 is ferromagnetic below 160 Kelvin (-113 Celsius). At the BaTiO3/SrRuO3 interface, the BaTiO3 ferroelectric polarization swirls the spins in SrRuO3, generating skyrmions. If the researchers flip the direction of polarization in BaTiO3, the density of the skyrmions changes.

Credit: IBS


While ferromagnets have their spins (magnetic moments, represented as arrows) aligned uniformly in a parallel fashion, magnetic skyrmions are formed by spins arranged in a whirl shape.

Credit: IBS

A team at the Center for Correlated Electron Systems, within the Institute for Basic Science (IBS, South Korea), in collaboration with the University of Science and Technology of China, have reported the discovery of small and ferroelectrically tunable skyrmions. Published in Nature Materials, this work introduces new compelling advantages that bring skyrmion research a step closer to application.

It is envisioned that storing memory on skyrmions - stable magnetic perturbations of whirling spins (magnetic moments) - would be faster to read and write, consume less energy, and generate less heat than the currently used magnetic tunnel junctions.

In future memory and logic devices, 1 and 0 bits would correspond to the existence and non-existence of a magnetic skyrmion, respectively. Although numerous skyrmion systems have been discovered in laboratories, it is still very challenging to produce controllable, nanometer-sized skyrmions for our technology needs.

In this study, the researchers found out that skyrmions with a diameter smaller than 100 nanometers spontaneously form in ultrathin material, consisting of a layer of barium titanate (BaTiO3) and a layer of strontium ruthenate (SrRuO3). Below 160 Kelvin (-113 Celsius), SrRuO3 is ferromagnetic, meaning that its spins are aligned uniformly in a parallel fashion.

When the two layers are overlaid, however, a special magnetic interaction swirls SrRuO3's spins, generating magnetic skyrmions. Such peculiar magnetic structure was detected below 80 Kelvin (-193 Celsius) by using magnetic force microscopy and Hall measurements.

In addition, by manipulating the ferroelectric polarization of the BaTiO3 layer, the team was able to change the skyrmions' density and thermodynamic stability. The modulation is non-volatile (it persists when the power is turned off), reversible, and nanoscale.

"Magnetic skyrmions and ferroelectricity are two important research topics in condensed matter physics. They are usually studied separately, but we brought them together," explains Lingfei Wang, first author of the study.

"This correlation provides an ideal opportunity to integrate the high tunability of well-established ferroelectric devices with the superior advantages of skyrmions into next-generation memory and logic devices."

Media Contact

Dahee Carol Kim
clitie620@ibs.re.kr
82-428-788-133

 @IBS_media

http://www.ibs.re.kr/en/ 

Dahee Carol Kim | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41563-018-0204-4

More articles from Physics and Astronomy:

nachricht Astronomy student discovers 17 new planets, including Earth-sized world
28.02.2020 | University of British Columbia

nachricht Explained: Why water droplets 'bounce off the walls'
27.02.2020 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>