Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

…and now for the weather on Mars

08.05.2013
In the north of the red planet, snowfalls occur with great regularity and can be predicted quite accurately

Snowstorms lashing down at the northern hemisphere of Mars during the icy cold winters may be predicted several weeks in advance, say researchers from the Tohoku University in Sendai (Japan) and the Max Planck Institute for Solar System Research (MPS) in Katlenburg-Lindau (Germany) in their newest publication.


In winter a layer of frozen carbon dioxide covers the Martian North Pole. Approximately 50 percent of this ice cap falls to the ground as snow. This image was taken by NASA's Mars Reconnaissance Orbiter in 2006. © NASA

For the first time, the scientists' calculations show a connection between these snowfalls and a special Martian weather phenomenon: fluctuations of pressure, temperature, wind speeds, and directions that in the northern hemisphere propagate in a wave-like manner and occur very regularly. For missions to the red planet exploring this region with rovers, such weather forecasts would offer the possibility of choosing a route that avoids heavy snow storms.

The Martian polar regions are an icy cold world. Similar to those on Earth they are covered by cohesive ice caps. In winter, when the temperatures drop below -128 degrees Celcius, this layer of ice is mainly supplied by frozen carbon dioxide from the atmosphere. The ice caps then cover a region reaching south to about 70 degrees northern latitude. Only in the comparably warm Martian summer the carbon dioxide sublimates revealing the planet's eternal ice: a considerably smaller cap of frozen water.

“Mars' seasonal ice has two different origins“, says Dr. Paul Hartogh from the MPS. „A part of the carbon dioxide from the atmosphere condensates directly on the surface – similar to the way a layer of frost forms on Earth in cold, clear weather. Another part freezes in the atmosphere”, he adds. The tiny ice crystals accumulate into clouds and fall to the ground as snow. In the new study, the researchers were now for the first time able to establish a connection between the occurrence of such ice clouds and a wave-like weather phenomenon characterized by a periodic change of pressure, temperature, wind speed, and -direction.

"This weather phenomenon on Mars is unique", says Dr. Alexander Medvedev from the MPS. Indeed, these so-called planetary waves can also be found in Earth's meteorology. However, not only are the oscillations in pressure and temperature in the lower atmosphere much weaker here. They also occur much less regularly and their wave characteristics are much less pronounced. "In the Martian northern hemisphere between fall and spring these waves can be found with astonishing reliability", the physicist adds. They propagate eastward with a uniform period of five to six days. Close to the surface, waves with higher frequencies can also be observed.

Due to the planetary waves the temperatures in the Martian atmosphere regularly oscillate around values notably below -128 degrees Celsius. This is the temperature at which carbon dioxide gas freezes. The scientists' calculations now show, that everywhere where the temperatures sink accordingly, tiny ice crystals are formed and accumulate into ice clouds. „These clouds can be found north of 70 degrees northern latitude in all layers of the atmosphere up to a height of 40 kilometres“, says Hartogh. The ice crystals that form below a height of 20 kilometres fall to the surface as snow.

"In order for such snowfalls to occur, the periodic temperature changes must be similar in all layers of the atmosphere", explains Medvedev. This is given in heights below 20 kilometres. In all other cases, the snow crystals encounter warmer air layers on their way down – and sublimate. Especially in a region in the northern hemisphere between 30 degrees western longitude and 60 degrees eastern longitude, these requirements are well fulfilled. Images taken by space telescopes and space probes show, that in this region the ice cap of frozen carbon dioxide reaches especially far to the south. The researchers' calculations suggest that all in all approximately half of the seasonal ice falls to the ground as snow.

For their simulations, Dr. Takeshi Kuroda from the Tohoku University and his colleagues from the MPS used an established climate model that they adapted to the special conditions on Mars. „The calculations need to take into account the large amounts of dust in the Martian atmosphere“, says Kuroda, who worked at the MPS until 2009 where he also received his PhD. In addition, the Martian atmosphere consists of more than 95 percent of carbon dioxide. The calculated temperatures and ice crystal densities are in good accordance with measured data obtained by NASA's Mars Reconnaissance Orbiter.

In the researchers' opinion, the new results could help to reliably predict snowstorms on Mars. "Everyone knows from experience that on Earth reliable weather forecasts are only possible for a time span of five to seven days at most", says Medvedev. "It is simply impossible to calculate whether or not it will snow somewhere on Earth 20 or 40 days in advance." On Mars this is different. The simulations show that in certain regions on Mars snow falls can be predicted far in advance. "For missions to Mars aiming to explore these regions with rovers this is valuable information", says Hartogh. The rovers' routes could be planned to avoid heavy snow storms.

Contact
Dr. Birgit Krummheuer
Press and Public Relations
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-462
Fax: +49 5556 979-240
Email: Krummheuer@­mps.mpg.de
Dr. Paul Hartogh
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-342
Dr. Alexander S. Medvedev
Phone: +49 5556 979-314
Email: Medvedev@­mps.mpg.de
Original publication
Takeshi Kuroda, Alexander S. Medvedev, Yasumasa Kasaba, and Paul Hartogh:
Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars

Geophysical Research Letters, Vol. 40, 1-5, 29 April 2013

Dr. Birgit Krummheuer | Max-Planck-Institute
Further information:
http://www.mpg.de/7241305/Mars-weather

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>