Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water signature in distant planet shows clues to its formation, Lawrence Livermore research finds

15.03.2013
A team of international scientists including a Lawrence Livermore National Laboratory astrophysicist has made the most detailed examination yet of the atmosphere of a Jupiter-size like planet beyond our solar system.

The finding provides astrophysicists with additional insight into how planets are formed.


Artist's rendering of the planetary system HR 8799 at an early stage in its evolution, showing the planet HR 8799c, a disk of gas and dust, and interior planets. Image courtesy of Dunlap Institute for Astronomy & Astrophysics; Mediafarm.

"This is the sharpest spectrum ever obtained of an extrasolar planet," said co-author Bruce Macintosh, an astronomer at Lawrence Livermore National Laboratory. "This shows the power of directly imaging a planetary system -- the exquisite resolution afforded by these new observations has allowed us to really begin to probe planet formation."

According to lead author Quinn Konopacky, an astronomer with the Dunlap Institute for Astronomy & Astrophysics, University of Toronto and a former LLNL postdoc: "We have been able to observe this planet in unprecedented detail because of Keck Obervatory's advanced instrumentation, our ground-breaking observing and data processing techniques, and because of the nature of the planetary system." The paper appears online March 14 in Science Express and in the March 21 edition of the journal, Science.

The team, using the OSIRIS instrument on the Keck II telescope on the summit of Mauna Kea, Hawaii, has uncovered the chemical fingerprints of specific molecules, revealing a cloudy atmosphere containing water vapor and carbon monoxide. "With this level of detail," says co-author Travis Barman, an astronomer at the Lowell Observatory, "we can compare the amount of carbon to the amount of oxygen present in the atmosphere, and this chemical mix provides clues as to how the planetary system formed."

The team, using the OSIRIS instrument on the Keck II telescope on the summit of Mauna Kea, Hawaii, has uncovered the chemical fingerprints of specific molecules, revealing a cloudy atmosphere containing water vapor and carbon monoxide. "With this level of detail," says co-author Travis Barman, an astronomer at the Lowell Observatory, "we can compare the amount of carbon to the amount of oxygen present in the atmosphere, and this chemical mix provides clues as to how the planetary system formed."

There has been uncertainty about how planets in other solar systems formed, with two leading models, called core accretion and gravitational instability. When stars form, they are surrounded by a planet-forming disk. In the first scenario, planets form gradually as solid cores slowly grow big enough to start absorbing gas from the disk. In the latter, planets form almost instantly as parts of the disk collapses on itself. Planetary properties, such as the composition of a planet's atmosphere, are clues as to whether a system formed according to one model or the other.

Although the planet's atmosphere shows clear evidence of water vapor, that signature is weaker than would be expected if the planet shared the composition of its parent star. Instead, the planet has a high ratio of carbon to oxygen -- a fingerprint of its formation in the gaseous disk tens of millions of years ago. As the gas cooled with time, grains of water ice form, depleting the remaining gas of oxygen. Planetary formation began when ice and solids collected into planetary cores -- very similar to how our solar system formed.

"Once the solid cores grew large enough, their gravity quickly attracted surrounding gas to become the massive planets we see today," said Konopacky. "Since that gas had lost some of its oxygen, the planet ends up with less oxygen and less water than if it had formed through a gravitational instability."

The planet is one of four gas giants known to orbit a star called HR 8799, 130 light-years from Earth. The authors and their collaborators previously discovered this planet, designated HR 8799c, and its three companions back in 2008 and 2010. Unlike most other planetary systems, whose presence is inferred by their effects on their parent star, the HR8799 planets can be individually seen.

"We can directly image the planets around HR 8799 because they are all large, young, and very far from their parent star. This makes the system an excellent laboratory for studying exoplanet atmospheres," said coauthor Christian Marois, an astronomer at the National Research Council of Canada and another former LLNL postdoc. "Since its discovery, this system just keeps on surprising us."

Although the planet does have water vapor, it's incredibly hostile to life -- like Jupiter, it has no solid surface, and it has a temperature of more than a thousand degrees Fahrenheit as it glows with the energy of its original formation. Still, this discovery provides clues as to the possibility of other Earthlike planets in other solar systems. "The fact that the HR 8799 giant planets may have formed the same way our own giant planets did is a good sign -- that same process also made the rocky planets close to the sun," Macintosh said.

The research is funded by Livermore's Laboratory Directed Research and Development program. LLNL is leading the construction of a new planet-finding instrument for the Gemini South telescope in Chile, known as the Gemini Planet Imager (GPI). Designed from the ground up for exoplanet detection, GPI (and similar new instruments at the Palomar and European Southern Observatories) will be capable of seeing planets that are much older, smaller and fainter than the HR-8799 giants. "GPI is the next big step in this field," said Macintosh, the principal investigator for the project. "It will be an order of magnitude more sensitive than we are now."

Simulations predict that a large-scale GPI survey should discover dozens of new exoplanets. By studying planets at different stages of their evolution, the GPI science team will further chip away at the puzzle of how planets form. GPI is currently undergoing final testing at UC Santa Cruz and will ship to Chile later in the year.

The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectroscopy and a world-leading laser guide star adaptive optics system. The Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

More Information

Dunlap Institute for Astronomy & Astrophysics, University of Toronto

National Research Council of Canada, W. M. Keck Observatory
Steve Jefferson, Communications Officer, Phone (808) 881-3827, E-mail: sjefferson@keck.hawaii.edu

"A Spectra-Tacular Sight," Science & Technology Review, July/August 2012

'Astronomers capture first images of newly-discovered solar system,' LLNL news release, Nov. 13, 2008

"Direct Imaging of Multiple Planets Orbiting the Star HR 8799," Science Express, Nov. 13, 2008.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov
http://www.llnl.gov/news/newsreleases/2013/Mar/NR-13-03-04.html

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>