Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water discovered in the Great Red Spot indicates Jupiter might have plenty more

31.08.2018

Recent research by a national team of scientists -- including Clemson University astrophysicist Máté Ádámkovics -- indicates that the giant gas planet might contain many times more water than Earth

On Dec. 7, 1995, NASA's historic Galileo probe plunged into Jupiter's atmosphere at 106,000 mph, relaying 58 minutes of data back to Earth before it was pulverized in the depths of the enormous planet's crushing interior.


Video: Jupiter's atmosphere might contain a lot of water, according to recent research by a national team of scientists that includes Clemson University's Máté Ádámkovics.

Credit: Jim Melvin / Clemson University

In terms of atmospheric composition, some of what the probe measured met expectations. But there were also some surprises, one of the most baffling being that the region Galileo entered was drier than astrophysicists had anticipated. Jupiter's 79 moons are mostly made of ice, so it had been assumed that the planet's atmosphere would contain a considerable amount of water. If so, the 750-pound probe didn't find it that day.

Almost a quarter of a century later, experts are still debating how much water might be swirling within Jupiter's howling atmosphere. Recent research by a national team of scientists - including Clemson University astrophysicist Máté Ádámkovics - indicates that the answer is ... a lot.

"By formulating and analyzing data obtained using ground-based telescopes, our team has detected the chemical signatures of water deep beneath the surface of Jupiter's Great Red Spot," said Ádámkovics, an assistant professor in the College of Science's department of physics and astronomy. "Jupiter is a gas giant that contains more than twice the mass of all of our other planets combined. And though 99 percent of Jupiter's atmosphere is composed of hydrogen and helium, even solar fractions of water on a planet this massive would add up to a lot of water - many times more water than we have here on Earth."

Ádámkovics' collaborative research was recently featured in Astronomical Journal, one of the world's premier journals for astronomy. He was part of a team that included Gordon L. Bjoraker of NASA; Michael H. Wong and Imke de Pater of the University of California, Berkeley; Tilak Hewagama of the University of Maryland; and Glenn Orton of the California Institute of Technology. The paper was titled "The Gas Composition and Deep Cloud Structure of Jupiter's Great Red Spot."

The team focused its sights on the Great Red Spot, a hurricane-like storm more than twice as wide as Earth that has been blustering in Jupiter's skies for more than 150 years. The team searched for water by using radiation data collected by two instruments on ground-based telescopes: iSHELL on the NASA Infrared Telescope Facility and the Near Infrared Spectograph on the Keck 2 telescope, both of which are located on the remote summit of Maunakea in Hawaii. iShell is a high-resolution instrument that can detect a wide range of gases across the color spectrum. Keck 2 is the most sensitive infrared telescope on Earth.

The team found evidence of three cloud layers in the Great Red Spot, with the deepest cloud layer at 5-7 bars. A bar is a metric unit of pressure that approximates the average atmospheric pressure on Earth at sea level. Altitude on Jupiter is measured in bars because the planet doesn't have an Earth-like surface from which to measure elevation. At about 5-7 bars - or about 100 miles below the cloud tops - is where the scientists believed the temperature would reach the freezing point for water. The deepest of the three cloud layers identified by the team was believed to be composed of frozen water.

"The discovery of water on Jupiter using our technique is important in many ways. Our current study focused on the red spot, but future projects will be able to estimate how much water exists on the entire planet," Ádámkovics said. "Water may play a critical role in Jupiter's dynamic weather patterns, so this will help advance our understanding of what makes the planet's atmosphere so turbulent. And, finally, where there's the potential for liquid water, the possibility of life cannot be completely ruled out. So, though it appears very unlikely, life on Jupiter is not beyond the range of our imaginations."

Clemson's main role in the research was to use specially designed software to transform raw data into science-quality data that could be more easily analyzed and also shared with scientists at Clemson and around the world. This type of work was performed this past spring by Rachel Conway, an undergraduate student in physics and astronomy who became involved in the project via Clemson's Creative Inquiry program.

"When I initially began, I started by running the data through. The code was already written and I was just plugging in new data sets and generating output files," said Conway, a native of Watertown, Connecticut. "But then I began fixing errors and learning more about what was actually going on. I'm interested in everything and anything that's out there, so learning more about what we don't know is always cool."

NASA's Juno spacecraft, which arrived at Jupiter in 2016 and will be orbiting and studying the planet until at least 2021, has revealed many secrets about a planet so large it almost became a star. Juno is also searching for water by using its own high-tech infrared spectrometer. If Juno's observations match ground-based observations, then the latter can be applied not just to the Great Red Spot, but to all of Jupiter. The technique als0 can be used to study Saturn, Uranus and Neptune, our solar system's three other gas planets.

"Starting this fall, the next project will be to get a lot more data of this kind to measure not just one spot on Jupiter. but all over Jupiter," said Ádámkovics, whose research focus is on the physics and chemistry of planet formation, planetary atmospheres and circumstellar disks. "To do this, we'll be collecting many gigabytes of data with the new instrument, iSHELL, that works at a very high resolution and will complement Juno's observations. The new part of this next project will be to write the automated software for all this data so that we can get a full picture of the planet's water abundance."

This time around, Ádámkovics and Conway will have some new members on their Clemson team. Ádámkovics will add six to eight Creative Inquiry students to assist with analyzing the raw data.

"In addition to physics students, we also have students who are computer scientists and who specialize in other fields," Ádámkovics said. "We expect that these cross-disciplinary skill sets will complement each other by enhancing our effectiveness and efficiency. Jupiter still has many mysteries. But we've never been more ready or more able to solve them."

Media Contact

Jim Melvin
jsmelvi@clemson.edu
864-784-1707

 @researchcu

http://www.clemson.edu 

Jim Melvin | EurekAlert!
Further information:
http://newsstand.clemson.edu/mediarelations/water-discovered-in-the-great-red-spot-indicates-jupiter-might-have-plenty-more/
http://dx.doi.org/10.3847/1538-3881/aad186

Further reports about: Atmosphere Jupiter NASA ground-based telescopes water on jupiter

More articles from Physics and Astronomy:

nachricht Scientists see energy gap modulations in a cuprate superconductor
02.04.2020 | DOE/Brookhaven National Laboratory

nachricht BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>