Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual ghost imaging: New technique enables imaging even through highly adverse conditions

16.02.2012
Ghost imaging (GI), and its even more oddly named cousin virtual ghost imaging (VGI), seem to contradict conventional wisdom by being able to image an object by simply counting photons in a "light bucket."

This non-intuitive technique, however, can lead to better images when conditions are less than ideal. In a first-of-its-kind demonstration, a team of researchers from the U.S. Army Research Laboratory in Adelphi, Md., and the University of Maryland in Baltimore, captured reflected photons from a highly specialized laser beam to create a VGI image of a remote target.

In the case of VGI, reflection does not refer to a mirror image of an object. Rather it is merely the individual reflected photons of light that are counted with a single-pixel camera known as a light bucket.

"Virtual ghost imaging is an amazing tool," says Ronald Meyers, a quantum physicist with the U.S. Army Research Laboratory, in a paper published in the American Institute of Physics' journal Applied Physics Letters. "Because we are no longer bound by the need to collect spatial information – as is necessary in a typical camera – we can produce an image in some rather adverse and highly obscured conditions."

In normal ghost imaging, harnessing information to make an image is a two-step process. First, you analyze the light source, which could be the sun or a lamp, with a charge-coupled device (CCD) camera. You then use a second detector, a light bucket, to count the reflected photons. By combining the data from the light source with the properties of the collected photons, an image can be created.

The trick to making an image from photons that contain no spatial information lies in physics related to "entanglement," a property of light that Einstein referred to as "spooky action at a distance." Through entanglement, photons (individual packets of light) can share a certain degree of information. This property is already being developed for specialized communications and computers.

Virtual ghost imaging is a more self-contained and robust application of this phenomenon. For example, in VGI, one light source was a laser that produced an incredibly coherent beam of light known as a Bessel beam. Bessel beams, unlike normal laser beams, produce concentric-circle patterns. If a portion of the beam is blocked or obscured along its trajectory, the original pattern eventually reforms. "Bessel beams are self-healing and provide an important tool in virtual ghost imaging," said Meyers. "Even after passing through distortions or a mask, the same well-defined ring shapes reemerge." So long as enough photons make it to the target and back to the single-photon detector, it's possible to construct an image.

In their proof-of-concept demonstration, the researchers compared a Bessel beam's VGI imaging capabilities with that of a normal "Gaussian" laser beam. Their target was the letters "ARL." The light was then reflected back to the single pixel bucket detector. The researchers conducted this same test several times, placing different objects or an obscuring medium in the paths of the two light beams. In each case – whether passing through an offset aperture, cloudy water, or heat distortion – the Bessel beam reformed to produce a recognizable VGI image. The Gaussian beam produced a much less faithful image, and, in the case of the offset aperture, produced virtually no image at all.

"What this demonstrates is that by combining virtual ghost imaging with a highly diffraction-free coherent light source like a Bessel beam, it's possible to probe through conditions that would normally thwart other imaging technologies," Meyers says.

According to the researchers, potential spin-offs of ghost imaging and virtual ghost imaging include applications in Intelligence-Surveillance-Reconnaissance (ISR), medical imaging, and quantum computing.

Article: "Virtual Ghost Imaging through Turbulence and Obscurants using Bessel Beam Illumination" is published in Applied Physics Letters.

Authors: Ronald E. Meyers (1), Keith S. Deacon (1), Arnold D. Tunick (1), and Yanhua Shih (2).

(1) US Army Research Laboratory, Adelphi, Md.
(2) Department of Physics, University of Maryland, Baltimore, Md.

Charles E. Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Simple experiment explains magnetic resonance
09.12.2019 | University of California - Riverside

nachricht Electronic map reveals 'rules of the road' in superconductor
09.12.2019 | Rice University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>