Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

View of the Earth in front of the Sun

19.06.2019

An international research team led by the University of Göttingen has discovered two new Earth-like planets near one of our closest neighboring stars. "Teegarden’s star" is only about 12.5 light years away from Earth and is one of the smallest known stars. It is only about 2,700 °C warm and about ten times lighter than the Sun. Although it is so close to us, the star wasn’t discovered until 2003. The scientists observed the star for about three years. The results were published in the journal Astronomy and Astrophysics.

Their data clearly show the existence of two planets. "The two planets resemble the inner planets of our solar system," explains lead author Mathias Zechmeister of the Institute for Astrophysics at the University of Göttingen.


Teegarden’s Star and its two planets, our Solar System in the background

Photo: University of Göttingen, Institute for Astrophysics

"They are only slightly heavier than Earth and are located in the so-called habitable zone, where water can be present in liquid form.”

The astronomers suspect that the two planets could be part of a larger system. "Many stars are apparently surrounded by systems with several planets," explains co-author Professor Stefan Dreizler of the University of Göttingen.

Teegarden's star is the smallest star where researchers have so far been able to measure the weight of a planet directly. "This is a great success for the Carmenes project, which was specifically designed to search for planets around the lightest stars," says Professor Ansgar Reiners of the University of Göttingen, one of the scientific directors of the project.

Although planetary systems around similar stars are known, they have always been detected using the “transit method” – the planets have to pass visibly in front of the star and darken it for a moment, which only happens in a very small fraction of all planetary systems.

Such transits have not yet been found for the new planets. But the system is located at a special place in the sky: from Teegarden's star you can see the planets of the solar system passing in front of the Sun.

"An inhabitant of the new planets would therefore have the opportunity to view the Earth using the transit method," says Reiners. The new planets are the tenth and eleventh discovered by the team.

Carmenes is carried out by the universities of Göttingen, Hamburg, Heidelberg, and Madrid, the Max-Planck-Institut für Astronomie Heidelberg, Institutes Consejo Superior de Investigaciones Científicas in Barcelona, Granada, and Madrid, Thüringer Landessternwarte, Instituto de Astrofísica de Canarias, and Calar-Alto Observatory. Further information can be found at https://carmenes.caha.es.

Wissenschaftliche Ansprechpartner:

University of Göttingen
Institute for Astrophysics:

Dr Mathias Zechmeister
Tel: +49 (0)551 39-9988
Email: zechmeister@astro.physik.uni-goettingen.de
Internet: http://www.astro.physik.uni-goettingen.de/~zechmeister/

Professor Ansgar Reiners
Tel: +49 (0)551 39-13825
Email: ansgar.reiners@phys.uni-goettingen.de
Internet: http://www.uni-goettingen.de/de/homepage/574854.html

Professor Stefan Dreizler
Tel: +49 (0)551 39-5041
Email: dreizler@astro.physik.uni-goettingen.de
Internet: http://www.uni-goettingen.de/de/216891.html

Originalpublikation:

Mathias Zechmeister et al. The CARMENES search for exoplanets around M dwarfs – Two temperate Earth-mass planet candidates around Teegarden’s Star. Astronomy & Astrophysics 2019. DOI: http://10.1051/0004-6361/201935460

Weitere Informationen:

https://www.uni-goettingen.de/en/3240.html?id=5496

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Beyond the brim, Sombrero Galaxy's halo suggests turbulent past
21.02.2020 | NASA/Goddard Space Flight Center

nachricht 10,000 times faster calculations of many-body quantum dynamics possible
21.02.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>