Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vibrations at an exceptional point

26.07.2018

New laser uses light to create sound

A team of international researchers led by engineers at Washington University in St. Louis has seen the light and now has a lasing system that produces "good vibrations."


A phonon laser formed by coupled optical resonators. Mechanical vibrations in resonator (blue) could be enhanced when the frequency difference of two optical supermodes matches with the frequency mechanical vibrations.

Credit: Micro/Nano Photonics Lab

They developed a lasing system already adept at producing tiny light packets called photons into a tunable system that also makes little bits of mechanical energy called phonons -- the energy products of oscillation, or vibration.

In doing so, they are the first research group to broaden what is called a laser linewidth in the phonon laser and steer it through a physical system known as the "exceptional point."

Linewidth is a key component of lasing, showing the physical integrity of the lasing signal as well as the measure of usually unwanted noise in the laser.

The study, which involved collaborators from China, Austria, Japan and Michigan, was published in the July 9, 2018, issue of Nature Photonics.

"We've shown that you can use a light field to trigger the mechanical movement that will generate an acoustic (sound) wave," said Lan Yang, the Edwin H. & Florence G. Skinner Professor of Electrical & Systems Engineering in the School of Engineering & Applied Science.

"Think of phonon lasing as a counterpart to traditional optic, or photon lasing, with exciting applications in medical surgery, materials science and communications. We have demonstrated a controllable phonon laser that can be tuned for threshold and linewidth, among other potential parameters.

"Our study for the first time provides direct evidence that exceptional point-enhanced optical noises can be transferred directly to mechanical noises," Yang said.

Yang's laser, an acronym for light amplification by stimulated emission of radiation, belongs to a category called whispering gallery mode resonators (WGM), which work like the famous whispering gallery in St. Paul's Cathedral in London, where someone on the one side of the dome can hear a message spoken to the wall by someone on the other side. Unlike the dome, which has resonances or sweet spots in the audible range, the sensor resonates at light frequencies and now at vibrational or mechanical frequencies.

Think of the exceptional point as a complex, super-energy mode, where often unpredictable and counterintuitive phenomena occur. Already, the exceptional point has contributed to a number of counterintuitive activities and results in recent physics studies -- with more expected to be discovered. In this international research project, mathematical tools were used to describe the physical system: An exceptional point arose in a physical field when two complex eigenvalues and their eigenvectors coalesced, or became one and the same.

"We use the phonon laser system rather than the photon laser to demonstrate our main results because it is easier to check the linewidth of the phonon laser compared with that of the photon laser," she said.

Picture the two WGM microresonators set closely to each other in a field with two photon detectors connected by a wave guide which brings light in and out of the system. Call these two "super modes" Resonator 1 and Resonator 2.

"In the first resonator, which supports photons and produces phonons, we know when the light field is strong enough the radiation will trigger the mechanical oscillation related to the acoustic wave vibration," Yang said. "We calibrated the acoustic wave frequency at 10 megahertz. Then we adjusted the gap between the two resonators to look at the transmission spectrum of the coupled resonators. When we changed the gap, we found that we could tune the spectral distance. We tuned it from 100 megahertz, to 80 to 50 depending on the physical gap between the resonators. If you tune the gap nicely to match the spectral distance between the two to the frequency of the mechanical vibration, then you have resonance."

Resonance is the phenomenon whereby an external force from a system causes another system to oscillate at certain frequencies.

The two light fields have two different frequencies and energy levels. The mechanical frequency of 10 megahertz matches the energy difference between the two super modes. Both resonators support photons, but only one produces phonons.

In future work, Yang intends to study more deeply the energy exchange between the two super modes in phonon lasing and continue to seek surprises at the exceptional point.

She calls phonon lasing's future, ironically, "very bright."

###

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 94 tenured/tenure-track and 28 additional full-time faculty, 1,300 undergraduate students, 1,200 graduate students and 20,000 alumni, we are working to leverage our partnerships with academic and industry partners -- across disciplines and across the world -- to contribute to solving the greatest global challenges of the 21st century.

Zhang J, Peng B, Ozdemir S, Pichler K, Krimer D, Zhao G, Nori F, Liu Y, Rotter S, Yang L. Operating a phonon laser at the exceptional point. Nature Photonics, July 9, 2018.

This research was supported by funding from the National Science Foundation; the Army Research Office; the European Commission; National Natural Science Foundation of China; National Basic Research Program of China; the Tsinghua University Initiative Scientific Research Program; the Tsinghua National Laboratory for Information Science and Technology Cross-Discipline Foundation; Air Force Office of Scientific Research; Asian Office of Aerospace Research and Development (AOARD); RIKEN-AIST Joint Research Fund; the Sir John Templeton Foundation; and the Austrian Science Fund.

Media Contact

Brandie Michelle Jefferson
brandie.jefferson@wustl.edu
314-935-5272

 @WUSTLnews

http://www.wustl.edu 

Brandie Michelle Jefferson | EurekAlert!
Further information:
https://source.wustl.edu/2018/07/vibrations-at-an-exceptional-point/
http://dx.doi.org/10.1038/s41566-018-0213-5

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>