Very distant galaxy cluster confirmed

Many of the oldest and most massive galaxies reside in clusters, enormous structures where numerous galaxies are found concentrated together. Galaxy clusters in the early universe are thought to be key to understanding the lifecycles of old galaxies, but to date astronomers have located only a handful of these rare, distant structures.

New research from a team led by Carnegie's Andrew Newman has confirmed the presence of an unusually distant galaxy cluster, JKCS 041. It is published by the Astrophysical Journal.

“Our observations make this galaxy cluster one of the best-studied structures from the early universe,” Newman said.

Although the team began studying JKCS 041 in 2006, it has taken years of observing with many of the world's most powerful telescopes to finally confirm its distance.

The team used the Hubble Space Telescope to capture sharp images of the distant cluster and split the starlight from the galaxies into its constituent colors, a technique known as spectroscopy. They found 19 galaxies at precisely the same great distance of 9.9 billion light years, the tell-tale sign of an early galaxy cluster.

A previous study using the Chandra X-ray Observatory discovered X-ray emissions in the location of JKCS 041.

“These X-rays likely originate from hot gas in JKCS 041, which has been heated to a temperature of about 80 million degrees by the gravity of the massive cluster,” said team member Stefano Andreon of the Osservatorio Astronomico di Brera, who led a companion paper published by Astronomy & Astrophysics, which is available here.

Today the largest and oldest galaxies are found in clusters, but there is a mystery about when and why these giant galaxies stopped forming new stars and became dormant, or quiescent. Peering back to a time when the galaxies in JKCS 041 were only 1 billion years old—or 10 percent of their present age—the team found that most had already entered their quiescent phase.

“Because JKCS 041 is the most-distant known cluster of its size, it gives us a unique opportunity to study these old galaxies in detail and better understand their origins,” Newman said.

Once massive galaxies enter their quiescent phase, they continue expanding in overall size. This is thought to occur as galaxies collide with one another and evolve into a new, larger galaxy. Early clusters are suspected to be prime locations for these collisions, but to the team's surprise they found that the galaxies in JKCS 041 were growing at nearly the same rate as non-cluster galaxies.

###

The international team included Newman, Andreon, Ginevra Trinchieri of the Osservatorio Astronomico di Brera, Richard Ellis of Caltech, Tommaso Treu of the University of California at Santa Barbara, and Anand Raichoor of the Observatorie di Paris.

This work was based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO-12927, which was supported under NASA contract NAS 5-26555. The work was also supported by the agreement ASI-INAF I/009/10/0 and the Osservatorio Astronomico di Brera.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact

Drew Newman Eurek Alert!

More Information:

http://carnegiescience.edu/

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors