Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UTK-ORNL-Oslo theorists pin down the proton-halo state in Flourine-17

27.05.2010
UT professor calculates proton halo state in Fluorine-17

A halo may be difficult to acquire in terms of virtue, but it can also be tough to calculate in terms of physics. Thomas Papenbrock, associate professor of physics and astronomy at the University of Tennessee, Knoxville, and his colleagues Gaute Hagen from Oak Ridge National Laboratory and Morten Hjorth-Jensen from the University of Oslo have managed to do just that, however, and report their findings in "Ab-initio computation of the 17F proton-halo state and resonances in A = 17 nuclei," published earlier this month in Physical Review Letters.

A halo nucleus differs from the more traditional nuclei because it has one or more nucleons (protons or neutrons) that are only weakly bound to the nuclear core. Consequently, they drift far away from it, forming, in effect, a halo. These nuclei are difficult to study because their lives are both short (often lasting only milliseconds) and fragile. Halo nuclei appear at the limits of nuclear existence, very near a place called the dripline. This is the perilous territory where the number of protons and the number of neutrons are plotted against each other and one too many of either means the nucleus will not hold together. Halo nuclei also come with a large number of degrees of freedom—independent configurations required to explain how a system is built.

Hagen, Hjorth-Jensen and Papenbrock set out to study flourine-17, a "mirror nucleus" of oxygen-17. Each of these isotopes has an atomic number of 17, but with their protons and neutrons in flipped numbers (flourine-17 has 9 protons and 8 neutrons, while oxygen-17 has 8 protons and 9 neutrons). Part of what makes these nuclei interesting is that they are neighbors of the most abundant and stable isotope of oxygen: oxygen-16. They determine its proton and neutron energies, which are the basic ingredients of the nuclear shell model—the way protons and neutrons are arranged in a nucleus—and are also key to understanding the shell structure in fluorine and oxygen isotopes. Flourine-17, in particular, has a "halo" formed by an excited proton orbiting far away from the oxygen-16 core that plays an important role in nucleosynthesis, the stellar processes that generate the elements that surround us.

The UTK-ORNL-Oslo team used sophisticated methods to work with the 17 interacting particles in this isotope to better understand it. This is called a many-body problem, meaning that whenever there are more than two bodies interacting with one another, it is difficult to pin down precise calculations of the system. Starting at the beginning (or ab initio, in Latin) the team began with a nuclear Hamiltonian, the operator that describes the energy of a system in terms of its momentum and positional coordinates. They also used the coupled-cluster method — a numerical technique that solves such quantum many-body problems — and ORNL's supercomputer Jaguar to successfully complete first-principle calculations of the proton halo state in Fluorine-17. The calculations contain no adjustable parameters and show a computed binding energy (what holds the nucleus together) that closely reflects experimental data.

The more tools scientists have to calculate the properties of nuclei—how long they live, what holds them together, and how they decay—the more clearly they can investigate the limits of nuclear existence, understand phenomenological models of the nucleus, and predict nuclear properties in applied fields like nuclear medicine or stockpile stewardship.

Whitney Holmes | EurekAlert!
Further information:
http://www.utk.edu

Further reports about: Flourine-17 Papenbrock halo nucleus neutrons oxygen isotope protons

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>