Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


USTC realizes strong indirect coupling in distant nanomechanical resonators


New progress in graphene-based nanomechanical resonator systems has been achieved in Key Laboratory of Quantum Information and Synergetic Innovation Center of Quantum Information & Quantum Physics of USTC. The jointed group, led by Prof. GUO Guoping, Research Associate Prof. DENG Guangwei from USTC and Prof. TIAN Lin from UC Merced, realized strong coupling between distant phonon modes, by introducing a third resonator as a phonon cavity mode. Varying the resonant frequency of the phonon cavity mode, the coupling strength between distant phonon modes can be continuous tuned. The results were published on 26th Jan., entitled as "Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity" in Nature Communications. [1]

With the advantages of small size, stability and high quality factors, nanomechanical resonators are considered as a promising candidate to storage, manipulate and transfer information. Both classical and quantum information can be encoded on phonon states of mechanical resonators.

Schematic and scanning electron microscopy image of device architecture with a chain of three graphene-based nanomechanical resonators.

Credit: @ university of science and technology of china

Phonon states can also transfer such information. Because of the rapid development of quantum acoustics, it is attracting more and more research interests. Huge amount of theoretical and experimental work have been done on connecting different systems, storing and transferring information via phonon states. [2]

The main problem of using nanomechanical resonator as information carrier is the realization of tunable phonon interaction at long distance. Many research groups around the world did a lot of studies on this problem. The most common way is to use optical cavities or superconducting microwave resonators as mediators. However, the difference between resonant frequencies of mechanical resonators and optical cavities or microwave resonators is too large. Also, the coupling strengths between them are relatively small, and hard to reach strong coupling regime.

Focusing on this problem, researchers proposed to employ mechanical resonator itself to act as a phonon cavity to replace the optical cavity or microwave resonator. The resonant frequencies of phonon cavity and mechanical resonators as information carriers are in the same range. Thus, these modes can be effectively coupled together. Previously, GUO's group realized strong coupling between neighboring mechanical resonators and coherent manipulation of phonon modes. [3, 4]

Based on these work, scientists designed and fabricated a linear chain of three graphene-based nanomechanical resonators, as shown in Fig. 1. In this device, the resonant frequency of each resonator can be tuned in a wide range via local bottom metal gates. Such tunability provides the possibility to realize and modulate the coupling between resonators in different frequency ranges. Firstly, they observed the mode splitting of each neighboring resonators.

It is found that in this structure, neighboring resonators are strongly coupled. Such results provide foundations for the study on the coupling between the first and the third resonator. When the resonant frequency of the center resonator is tuned near to that of the side resonators, large mode splitting can be observed. Also they found that the splitting can be widely tuned via tuning the resonant frequency of center resonator.

This phenomenon is similar to Raman process in optics. The center resonator can be regarded as a mediating state, the phonon modes of side resonators can achieve effective coupling via exchanging virtual phonon with the mediating state (Fig. 1). Using the theoretical model of optical Raman process, they got the relation between effective coupling strength and detuning. The experiment data agrees well with the theoretical results.

It is the first time to experimentally realize non-neighboring coupling in graphene-based nanomechanical resonators, and shed light on the studies of nanomechanical resonators. With the development of the studies on phonon states cooling, this work provides the foundation for storage and transfer of quantum information via phonon modes.


The co-first authors of this work is Dr. LUO Gang and Mr. ZHANG Zhuozhi from CAS Key Laboratory of Quantum Information. This work is supported by the Ministry of Science and Technology, National Natural Science Foundation of China, Chinese Academy of Sciences, Ministry of Education, National Natural Science Foundation of United States, University of California and the USTC Center for Micro and Nanoscale Research and Fabrication.


[1] G. Luo, Z.-Z. Zhang, G.-W. Deng, H.-O. Li, G. Cao, M. Xiao, G.-C. Guo, L. Tian, and G.-P. Guo, Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity, Nature Commun. 9, 383 (2018).

[2] L. Tian, Optoelectromechanical transducer: reversible conversion between microwave and optical photons, Ann. Phys. (Berlin) 527, 1 (2015).

[3] G-W. Deng, D. Zhu, X-H. Wang, C-L. Zou, J-T. Wang, H-O. Li, G. Cao, D. Liu, Y. Li, M. Xiao, G-C. Guo, K-L. Jiang, X-C. Dai, G-P. Guo, Strongly coupled nanotube electromechanical resonators, Nano Lett. 16, 5456 (2016).

[4] D. Zhu, X-H. Wang, W-C. Kong, G-W. Deng, J-T. Wang, H-O. Li, G. Cao, M. Xiao, K-L. Jiang, X-C. Dai, G-C. Guo, F. Nori, G-P. Guo, Coherent phonon Rabi oscillations with a high frequency carbon nanotube resonator, Nano Lett. 17, 915 (2017).

Media Contact

Jane Fan Qiong 

Jane Fan Qiong | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>