Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using lasers to visualize molecular mysteries in our atmosphere

09.08.2019

A new technique offers a direct way for scientists from varied fields to study fundamental molecular interactions

Invisible to the human eye, molecular interactions between gases and liquids underpin much of our lives, including the absorption of oxygen molecules into our lungs, many industrial processes and the conversion of organic compounds within our atmosphere.


Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes. Researchers in the U.K. hope their new technique of enabling the visualization of gas molecules bouncing off a liquid surface will help climate scientists improve their predictive atmospheric models. The technique is described in The Journal of Chemical Physics. This image shows a packet of hydroxyl radical molecules hitting a liquid surface and creating a broad scattered plume, which is nearly identical for the two angles of approach, vertically or at 45 degrees.

Credit: Kenneth McKendrick

But difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

Kenneth McKendrick and Matthew Costen, both at Heriot-Watt University, in Edinburgh, U.K., hope their new technique of enabling the visualization of gas molecules bouncing off a liquid surface will help climate scientists improve their predictive atmospheric models. The technique is described in The Journal of Chemical Physics, from AIP Publishing.

"The molecule of interest in our study, the hydroxyl radical, is an unstable fragment of a molecule that affects the whole of the understanding of atmospheric chemistry and things that genuinely affect climate," said McKendrick.

"Some of these important OH reactions take place at the surface of liquid droplets, but we can't see surface interactions directly, so we measure the characteristics of the scattered molecules from real-time movies to infer what happened during their encounter with the liquid."

Laser sheets are the key to the technique, inducing a short-lived fluorescent signal from each molecule as it passes through 10 nanosecond pulses. Laser-induced fluorescence isn't new in itself, but this was the first time laser sheets have been applied to scattering from a surface in a vacuum with no other molecules present to interfere with the scattering from the molecular beam.

This enabled the McKendrick team to capture individual frames of molecular movement, from molecular beam to liquid surface and scattering, which were compiled into movies.

Unlike previous methods of capturing gas-liquid interactions, all the characteristics needed to understand the interaction -- speed, scatter angle, rotation, etc. -- are captured within the simple movies that McKendrick describes as "intuitive."

By observing the molecular film strips, McKendrick's team noted molecules scattered at a broad range of angles, similar to a ball bouncing off in all directions when thrown onto an uneven surface. This simple observation directly proved the surface of liquids is not flat.

"When you get down to the molecular level, the surface of these liquids is very rough, so much so that you can barely tell the difference between the distribution of molecules when directed down vertically onto the surface or when at an angle of 45 degrees. This finding is important for understanding the chances of different molecular processes happening at the liquid surface," said McKendrick.

As they improve their technique, McKendrick's team hopes to collect more refined information from atmospheric relevant liquids. But McKendrick points out the technique is not limited to the field of atmospheric science and is likely to soon be applied to understanding the gas-solid interactions that occur in processes such as the catalytic conversion of gases in car engines.

###

The article, "Real-space laser-induced fluorescence imaging applied to gas-liquid interfacial scattering," is authored by Robert H. Bianchini, Maksymilian J. Roman, Matthew L. Costen and Kenneth G. McKendrick. The article will appear in The Journal of Chemical Physics on August 6, 2019 (DOI: 10.1063/1.5110517). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5110517.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

Media Contact

Larry Frum
media@aip.org
301-209-3090

http://www.aip.org

Larry Frum | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5110517

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>