Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using lasers to visualize molecular mysteries in our atmosphere

09.08.2019

A new technique offers a direct way for scientists from varied fields to study fundamental molecular interactions

Invisible to the human eye, molecular interactions between gases and liquids underpin much of our lives, including the absorption of oxygen molecules into our lungs, many industrial processes and the conversion of organic compounds within our atmosphere.


Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes. Researchers in the U.K. hope their new technique of enabling the visualization of gas molecules bouncing off a liquid surface will help climate scientists improve their predictive atmospheric models. The technique is described in The Journal of Chemical Physics. This image shows a packet of hydroxyl radical molecules hitting a liquid surface and creating a broad scattered plume, which is nearly identical for the two angles of approach, vertically or at 45 degrees.

Credit: Kenneth McKendrick

But difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

Kenneth McKendrick and Matthew Costen, both at Heriot-Watt University, in Edinburgh, U.K., hope their new technique of enabling the visualization of gas molecules bouncing off a liquid surface will help climate scientists improve their predictive atmospheric models. The technique is described in The Journal of Chemical Physics, from AIP Publishing.

"The molecule of interest in our study, the hydroxyl radical, is an unstable fragment of a molecule that affects the whole of the understanding of atmospheric chemistry and things that genuinely affect climate," said McKendrick.

"Some of these important OH reactions take place at the surface of liquid droplets, but we can't see surface interactions directly, so we measure the characteristics of the scattered molecules from real-time movies to infer what happened during their encounter with the liquid."

Laser sheets are the key to the technique, inducing a short-lived fluorescent signal from each molecule as it passes through 10 nanosecond pulses. Laser-induced fluorescence isn't new in itself, but this was the first time laser sheets have been applied to scattering from a surface in a vacuum with no other molecules present to interfere with the scattering from the molecular beam.

This enabled the McKendrick team to capture individual frames of molecular movement, from molecular beam to liquid surface and scattering, which were compiled into movies.

Unlike previous methods of capturing gas-liquid interactions, all the characteristics needed to understand the interaction -- speed, scatter angle, rotation, etc. -- are captured within the simple movies that McKendrick describes as "intuitive."

By observing the molecular film strips, McKendrick's team noted molecules scattered at a broad range of angles, similar to a ball bouncing off in all directions when thrown onto an uneven surface. This simple observation directly proved the surface of liquids is not flat.

"When you get down to the molecular level, the surface of these liquids is very rough, so much so that you can barely tell the difference between the distribution of molecules when directed down vertically onto the surface or when at an angle of 45 degrees. This finding is important for understanding the chances of different molecular processes happening at the liquid surface," said McKendrick.

As they improve their technique, McKendrick's team hopes to collect more refined information from atmospheric relevant liquids. But McKendrick points out the technique is not limited to the field of atmospheric science and is likely to soon be applied to understanding the gas-solid interactions that occur in processes such as the catalytic conversion of gases in car engines.

###

The article, "Real-space laser-induced fluorescence imaging applied to gas-liquid interfacial scattering," is authored by Robert H. Bianchini, Maksymilian J. Roman, Matthew L. Costen and Kenneth G. McKendrick. The article will appear in The Journal of Chemical Physics on August 6, 2019 (DOI: 10.1063/1.5110517). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5110517.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

Media Contact

Larry Frum
media@aip.org
301-209-3090

http://www.aip.org

Larry Frum | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5110517

More articles from Physics and Astronomy:

nachricht Fusion by strong lasers
06.12.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht NASA's OSIRIS-REx mission explains Bennu's mysterious particle events
06.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>