Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unveiling the true face of a gigantic star

11.08.2009
An international team of astronomers, led by Keiichi Ohnaka at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, has made the most high resolution images of a dying giant star to date.

For the first time they could show how the gas is moving in different areas over the surface of a distant star. This was made possible by combining three 1.8 metre telescopes as an interferometer, giving the astronomers the resolving power of a virtual, gigantic 48 metre telescope.

Using the ESO VLT Interferometer in Chile, they discovered that the gas in the dying star's atmosphere is vigorously moving up and down, but the size of such "convection cell or bubble" is as large as the star itself. These colossal bubbles are a key for pushing material out of the star's atmosphere into space, before the star explodes as a supernova. (Astronomy & Astrophysics, 2009, in press).

When one looks up at the clear night sky in winter, it is easy to spot a bright, orange star on the shoulder of the constellation Orion (the Hunter) even in light-flooded large cities. This is the star Betelgeuse. It is a gigantic star, which is so huge as to almost reach the orbit of Jupiter, swallowing the inner planets Mercury, Venus, Earth, and Mars, when placed at the centre of our solar system. It is also glaringly bright, emitting 100 000 times more light than the Sun. Betelgeuse is a so-called red supergiant and approaching the end of its short life of several million years. Red supergiants shed a large amount of material made of various molecules and dust, which are recycled for the next generation of stars and planets possibly like the Earth. Betelgeuse is losing material equivalent to the Earth's mass every year.

How do such giant stars lose mass, which would normally be bound to the star by the gravitational pull? This is a long-standing mystery. The best way to tackle this issue is to observe the situation where the material is ejected from a star's surface, but this is a very challenging task. Although Betelgeuse is such a huge star, it looks like a mere reddish dot even with the today's largest, 8 - 10 metre telescopes, because the star is 640 light years away.

Therefore, astronomers need a special technique to overcome this problem. By combining two or more telescopes as a so-called interferometer, astronomers can achieve a much higher resolution than provided with individual telescopes. The Very Large Telescope Interferometer (VLTI) on Cerro Paranal in Chile, operated by the European Southern Observatory (ESO), is one of the world's largest interferometer. A team of astronomers in German, French, and Italian institutions observed Betelgeuse with the AMBER instrument operating at near-infrared wavelengths. The resolving power achieved with AMBER is so great that one can recognize a 1-Euro coin placed on the Brandenburg Gate in Berlin from Bonn.

"Our AMBER observations mark the sharpest images ever made of Betelgeuse", says Keiichi Ohnaka at the MPIfR, the first author of the publication presenting the result. "And for the first time, we have spatially resolved the gas motion in the atmosphere of a star other than the Sun. Thus, we could observe how the gas is moving in different areas over the star's surface."

The AMBER observations have revealed that the gas in Betelgeuse's atmosphere is moving vigorously up and down. The size of these "bubbles" is also gigantic, as large as the supergiant star itself (that is, one bubble as large as the orbit of Mars is moving at some 40 000 km/h). While the origin of these bubbles is not yet entirely clear, the AMBER observations have shed new light on the question about how red supergiant stars lose mass: such colossal bubbles can expel the material from the surface of the star into space. It also means that the material is not spilling out in a quiet, ordered fashion, but is flung out more violently in arcs or clumps.

The death of the gigantic star, which is expected in the next few thousand to hundred thousand years, will be accompanied by cosmic fireworks known as a supernova like the famous SN1987A. However, as Betelgeuse is much closer to the Earth than SN1987A, the supernova can be clearly seen with the unaided eye, even in daylight.

Original work:

K. Ohnaka, K.-H. Hofmann, M. Benisty, A. Chelli, T. Driebe, F. Millour, R. Petrov, D. Schertl, Ph. Stee, F. Vakili, G. Weigelt

Spatially resolving the inhomogeneous structure of the dynamical atmosphere of Betelgeuse with VLTI/AMBER

Astronomy & Astrophysics, 2009, in press.

Dr. Norbert Junkes | EurekAlert!
Further information:
http://www.mpg.de
http://www.mpifr.de

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>