Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unravelling the web of a cosmic creeply-crawly

10.01.2014
This new Hubble image is the best-ever view of a cosmic creepy-crawly known as the Tarantula Nebula, a region full of star clusters, glowing gas, and dark dust. Astronomers are exploring and mapping this nebula as part of the Hubble Tarantula Treasury Project, in a bid to try to understand its starry anatomy.

The Tarantula Nebula is located in one of our closest galactic neighbours, the Large Magellanic Cloud. Hubble has released images of this celestial spider several times before: in 2004 (heic0416), 2010 (heic1008), 2011 (heic1105) and 2012 (heic1206). While these images show striking panoramic views of this turbulent region, this new image gives us the deepest and most detailed view yet.


Image credit: NASA, ESA, E. Sabbi (STScI)

Created using observations taken as part of the Hubble Tarantula Treasury Project (HTTP), this image is composed of near-infrared observations from both Hubble's Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS). Due to the combination of infrared filters in this image a purple haze fills the frame, with deep red wisps of dust and bright stars scattered throughout.

This region is an example of an HII region — a large cloud of partially ionised hydrogen within which new stars are being born. Visible to the left of centre is a sparkling star cluster known as R136. It was initially identified as a star, but astronomers puzzled over how one single monstrous star could ionise a giant HII region. However, astronomers later realised it was actually a cluster of stars: a super star cluster.

R136 will eventually become a globular cluster: a spherical ball of old stars that orbits around the centre of its host galaxy. R136 is so massive that it contributes greatly to the Tarantula's brightness, emitting most of the energy that makes the nebula so visible.

The Hubble Tarantula Treasury Project (HTTP) is scanning and imaging many of the stars within the Tarantula, mapping out the locations and properties of the nebula's stellar inhabitants. These observations will help astronomers to view the nebula and piece together an understanding of the nebula's structure [1].

This new image is being released today, 9 January 2014, at the 223rd meeting of the American Astronomical Society in Washington, DC, USA.

Notes

[1] This image of 30 Doradus is also the focal point of an iBook on stellar evolution aimed at children with visual imparments. The book, called "Reach for the Stars: Touch, Look, Listen, Learn" is produced by Elena Sabbi — the lead researcher on this Hubble image — and her collaborators. More information can be found here.

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

Contacts

Ray Villard
Space Telescope Science Institute
Baltimore, Maryland, USA
Cell: +1-410-338-4514
Email: villard@stsci.edu
Nicky Guttridge
ESA/Hubble Public Information Officer
Garching bei München, Germany
Tel: +49-89-3200-6855
Cell: +44 7512 318322
Email: nguttrid@partner.eso.org

| ESO-Media-Newsletter
Further information:
http://www.eso.org

Further reports about: Hubble Space Telescope Tarantula nebula Telescope cell death star cluster

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>