Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind

13.05.2014

Plasma technology based on Dielectric Barrier Discharge (DBD) has been widely demonstrated to be a novel active flow control method.

In order to make the plasma flow control technology more practical, the plasma authority must be improved at high wind speed. Dr. ZHANG Xin and his group from School of Aeronautic, Northwestern Polytechnical University set out to tackle this problem.


This shows the flow field around the plasma actuator.

Credit: ©Science China Press

After 2-years of innovative research, they have developed a novel plasma actuator to improve the plasma authority at high wind speed. They found that the novel plasma actuator acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the wind speed of 100 m/s.

Their study expanded the plasma actuator authority and demonstrated an important role of plasma actuator in the real application. Their work, entitled "Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed", was published in SCIENCE CHINA Physics, Mechanics & Astronomy. 2014, Vol 57(6).

... more about:
»Astronomy »CAS »Exploration »SCP »UAV »temperature

Plasma flow control technology based on DBD has been widely demonstrated to be a novel active flow control method for boundary layer control, lift augmentation and separation control. Compared with the traditional active flow control, the plasma flow control has simple structure without moving parts and is convenient for real time control due to its fast response.

Many researchers have engaged in the study of plasma flow control. However, in the existing literature, the wind speeds of stall separation control on three-dimensional aerial vehicle using DBD plasma actuator so far were no more than 50 m/s, but the flow speed of real flight is generally above 100 m/s. Therefore, in order to make the plasma flow control technology more practical, the plasma authority must be improved at higher wind speeds.

This work explored the aerodynamic control using novel plasma on a UAV at high wind speeds. The results indicated that the novel plasma actuator was not only jet actuator but also vortex generator, as shown in Figure 1. It can create relatively large-scale disturbances in the separated wake shear layer and promote momentum exchange between low speed and high speed regions which lead to shear layer separation delay.

It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. This study demonstrated an important role of plasma actuator in the real application.

###

This research project was partially supported by the Exploration Foundation of Weapon Systems. It is an important breakthrough in the recent history of the study of plasma flow control. Future research will focus on flight verification testing for the UAV and on the effects of atmospheric parameters, including atmospheric pressure, temperature, and particularly air humidity.

See the article:

Zhang X, Huang Y, Wang W B, et al. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed. SCI CHINA Phys Mech Astron, 2014 Vol. 57 (6): 1160-1168

http://phys.scichina.com:8083/sciGe/EN/abstract/abstract508799.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

http://www.scichina.com/

ZHANG Xin | Eurek Alert!

Further reports about: Astronomy CAS Exploration SCP UAV temperature

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>