Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two University of Tennessee Scientists to Begin Searching for Potential Habitats for Life on Mars

07.08.2012
NASA's Curiosity rover is scheduled to land on Mars Sunday. Then, the work will begin for two University of Tennessee, Knoxville, professors searching for potentially habitable environments on the red planet.

Linda Kah and Jeffrey Moersch, associate professors in the Department of Earth and Planetary Sciences, are an integral part of the NASA team working on the rover.

The Curiosity rover is looking for clues to whether the Martian surface has ever had an environment capable of evolving, or potentially sustaining life. Critical evidence may include liquid or frozen water, organic compounds or other chemical ingredients related to life.

To view a video about the mission, visit http://bit.ly/PLy1eO.

Kah, Moersch and the rest of the science team will soon begin selecting targets for the rover and helping choose which instruments will be used to examine Martian soils and sedimentary rocks.

"In particular, we will be examining sedimentary rocks that form Mount Sharp, which is a more than five-kilometer-high mountain within Gale Crater, the area the rover is exploring," said Kah. "These rocks might serve as a time capsule of Mars' transition from a warm, wet planet to a cold, dry one."

Kah is part of a camera team that is searching for features within rocks that might provide clues to the role of fluids in the planet's past. When combined with chemical measurements, these observations can help determine how life might have exploited surface environments.

"We like to pretend that the rover is like a field geologist with an analytical laboratory on her back," said Kah. "Curiosity has a lot more capabilities than earlier rovers. The cameras and my scientific team act as the rover's eyes and ears."

Working from Pasadena, Calif., the team will guide the rover to collect soil material and powdered rock samples using its robotic arm to gather, filter and transfer them into the rover's analytical system. Kah and other scientists will then use an instrument capable of detecting both organic molecules and the isotopic signatures often left in rocks by microbial metabolisms.

"Twice a day, data will be downlinked to specialists who will put it into a format that will be most accessible to the rest of the scientists," said Kah. "Five teams will look at the data and use their expertise to decide the next targets and the most pertinent questions."

Moersch is searching for hydrogen—another ingredient important for life—in the form of water, ice or hydrated minerals.

"Hydrogen is an interesting element because, geologically, it is only likely to be found in water and in hydrated minerals, such as gypsum or clays," said Moersch. "Those types of minerals tell us about the history of the environment in that location and whether or not there was liquid water there, making it more hospitable for life."

Moersch and the team will use the rover's neutron detector—the same technology oil companies use to sniff out hydrocarbons in drill holes—to search for hydrogen-bearing materials and other geochemical anomalies in the Martian surface.

"If the neutron detector turns up something that is potentially interesting in a given location, we may choose to spend some additional time to investigate that location with the rover's other instruments, including sampling the subsurface with a small drill," said Moersch.

The process is painstakingly slow. The rover likely will cover only about 200 meters on a good day, and the mission will not conclude until at least 2014. Still the scientists are certain their hard work will pay off.

"I expect that we will find evidence for the building blocks of life, although that is a far cry from actually finding evidence for life," said Kah. "Personally, I am more excited by the opportunity to ask a whole set of higher-order questions about what the Martian surface was like and how it might have changed through time."

The rocket launched from the Kennedy Space Center on Nov. 26.

Whitney Heins | Newswise Science News
Further information:
http://www.utk.edu
http://www.youtube.com/watch?v=XaUh7CO4Hdc&feature=youtu.be

More articles from Physics and Astronomy:

nachricht Return of the Blob: Surprise link found to edge turbulence in fusion plasma
27.05.2020 | DOE/Princeton Plasma Physics Laboratory

nachricht NIST researchers boost microwave signal stability a hundredfold
26.05.2020 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>