Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Ottawa tool to democratize nanopore research

15.01.2020

A nanopore is a tiny hole in a thin membrane with a diameter of around a billionth of a meter, or about the width of a single DNA molecule. The potential applications of these nanopores are so diverse - from medicine to information technology (IT) - that they could have a major impact on our daily lives. Now a team of researchers at the University of Ottawa is democratizing entry into the field of nanopore research by offering up a unique tool to accelerate the development of new applications and discoveries.

The innovative T.-Cossa Lab, which studies applied single-molecule biophysics, came up with the idea to provide the research community with the protocols, hardware designs, and software required to fabricate solid-state nanopores in a fast, low cost, and completely automated fashion. This method is now available in the online journal Nature Protocols.


Controlled breakdown (CBD) pore fabrication.

Credit: T.-Cossa Lab, Department of Physics, University of Ottawa

The move is a boon for researchers developing diagnostic and sequencing applications in health, life sciences, and IT, where being able to detect and identify single biological molecules like proteins or DNA with the exacting precision of a nanopore is needed.

"For the first time, we are making our unique nanopore fabrication tool freely available," explained Vincent Tabard-Cossa, professor in the Department of Physics and Director of the Laboratory for Applied Single-Molecule Biophysics at the University of Ottawa. "We opted to offer our patented nanopore fabrication technology to the research community for free, to help disseminate it and expand the field of nanopore research."

Solid-state nanopores are now well established as single-biomolecule sensors which hold enormous promise for fast and low-cost sensing and sequencing applications, including rapid identification of pathogens, biomarker quantification for precision medicine, metagenomics, microbiome analysis, and cancer research.

However, until recently, this promise had been stifled by the expensive, labor intensive, and low-yield methods by which pores were fabricated. To address this problem, Professor Tabard-Cossa and his team pioneered a cheap and scalable solid-state nanopore fabrication method in 2012 called controlled breakdown (CBD), which has since become the method of choice by which solid-state nanopores are fabricated by research groups around the world.

"To foster accessible innovation, we set out to make an instrument and workflow that could be operated successfully by someone who had never even heard of a nanopore," said Matthew Waugh, lab manager of the T.-Cossa Lab. "We've already had some amazing successes through a local scientific outreach program where high school students have been able to independently produce nanopores and detect individual DNA molecules in a single afternoon using our tools."

CBD pore fabrication replaces expensive, manually operated electron microscopes with low cost, easy-to-use, small benchtop instruments that automatically fabricate nanopores to a given size at the click of a button. According to Dr. Tabard-Cossa, researchers can now focus their attention on developing different real-world nanopore applications in various fields.

"One such application tackles the growing need to store and archive huge amounts of digital information for very long timescales," said Kyle Briggs, postdoctoral fellow in the T.-Cossa lab. "Nature solved this problem a long time ago with DNA, and a similar approach will work for us, in which the information is stored as the sequence of a synthetic polymer, reducing server farms down to the size of a fridge and saving billions of dollars in energy costs and fried hard drives. Solid-state nanopores could enable the next major breakthrough in data storage since they can be used as the element that reads the information off the polymers," he added.

Video: https://www.youtube.com/watch?v=s98--BRCCWY&feature=emb_logo

###

The paper Waugh, M., Briggs, K., Gunn, D. et al. Solid-state nanopore fabrication by automated controlled breakdown. Nat Protoc 15, 122-143 (2020) doi:10.1038/s41596-019-0255-2 was published in the January issue of Nature Protocols.

For media inquiries:

Justine Boutet
Media Relations Officer
Cell: 613.762.2908
justine.boutet@uottawa.ca

http://www.uottawa.ca 

Justine Boutet | EurekAlert!
Further information:
http://media.uottawa.ca/news/uottawa-tool-democratize-nanopore-research
http://dx.doi.org/10.1038/s41596-019-0255-2

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>