Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Minnesota leads team in discovery of novel type of magnetic wave

11.11.2010
Findings could improve wiring in national electrical grid systems

A team of international researchers led by physicists in the University of Minnesota's College of Science and Engineering have made a significant breakthrough in an effort to understand the phenomenon of high-temperature superconductivity in complex copper-oxides—one of the most studied scientific topics in history.

The University of Minnesota researchers and their international colleagues from Germany, France and China report the discovery of a novel type of magnetic wave involving oxygen atoms. The new findings could have implications for improving superconducting electric wires used in national electrical grids.

The study by lead author Martin Greven, an associate professor in the university's School of Physics and Astronomy, is published in the Nov. 11 issue of Nature together with a "News and Views" introduction. The research is also scheduled to be highlighted in the journal Science.

"Following the Nobel-Prize winning discovery of high-temperature superconductivity in complex copper-oxide materials in the mid 1980s, the effort to understand this phenomenon has been one of the major scientific challenges in the field of physics for the past quarter century, with more than 100,000 publications on the topic," Greven said.

"While the commercialization of these complex copper-oxide materials, in the form of superior electric wires, has recently begun, physicists have not yet been able to solve the mystery of why these exotic materials are superconducting in the first place. The materials' unusual magnetism is often argued to be responsible for their superconductivity," Greven added.

In their experiments, the researchers bombarded the copper-oxide crystals with intense beams of neutrons. The neutrons themselves are magnetic, and by carefully measuring how these particles are scattered from the crystals, the research team was able to show the existence of unusual magnetic waves involving oxygen atoms.

"We believe that our discovery sheds new light on this hotly debated subject of superconductivity," Greven said.

Other members of the research team include two of Greven's former Ph.D. students, Guichuan Yu, University of Minnesota, School of Physics and Astronomy, and Yuan Li, now at the Max Planck Institute, Stuttgart, Germany; V. Balédent , Y. Sidis and P. Bourges, Laboratoire Léon Brillouin, Gif sur Yvette, France; N. Bariši, Physikalisches Institut, Universitat Stuttgart, Stuttgart, Germany; K. Hradil, Institut fur Physikalisches Chemie, Universitat Göttingen, Göttingen, Germany; R.A. Mole, Forschungsneutronenquelle Heinz Maier-Leibnitz, Garching, Germany; P. Steffens, Institut Laue Langevin, France; and X. Zhao State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China.

More information on the research can be found on the Nature website at: http://www.nature.com/nature/journal/v468/n7321/full/nature09477.html

Rhonda Zurn | EurekAlert!
Further information:
http://www.umn.edu
http://www.nature.com/nature/journal/v468/n7321/full/nature09477.html

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>