Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Florida physicists set new record for graphene solar cell efficiency

25.05.2012
Doping may be a no-no for athletes, but researchers in the University of Florida’s physics department say it was key in getting unprecedented power conversion efficiency from a new graphene solar cell created in their lab.

Graphene solar cells are one of industry’s great hopes for cheaper, durable solar power cells in the future. But previous attempts to use graphene, a single-atom-thick honeycomb lattice of carbon atoms, in solar cells have only managed power conversion efficiencies ranging up to 2.9 percent.

The UF team was able to achieve a record breaking 8.6 percent efficiency with their device by chemically treating, or doping, the graphene with trifluoromethanesulfonyl-amide, or TFSA. Their results are published in the current online edition of Nano Letters.

“The dopant makes the graphene film more conductive and increases the electric field potential inside the cell,” said Xiaochang Miao, a graduate student in the physics department. That makes it more efficient at converting sunlight into electricity. And unlike other dopants that have been tried in the past, TFSA is stable — its effects are long lasting.

The solar cell that Miao and her co-workers created in the lab looks like a 5-mm-square window framed in gold. The window, a wafer of silicon coated with a monolayer of graphene, is where the magic happens.

Graphene and silicon, when they come together, form what is called a Schottky junction — a one-way street for electrons that when illuminated with light, acts as the power conversion zone for an entire class of solar cells. Schottky junctions are commonly formed by layering a metal on top of a semiconductor. But researchers at the UF Nanoscience Institute for Medical and Engineering Technologies discovered in 2011 that graphene, a semi-metal, made a suitable substitute for metal in creating the junction.

“Graphene, unlike conventional metals, is transparent and flexible, so it has great potential to be an important component in the kind of solar cells we hope to see incorporated into building exteriors and other materials in the future,” said Arthur Hebard, distinguished professor of physics at UF and co-author on the paper. “Showing that its power-converting capabilities can be enhanced by such a simple, inexpensive treatment bodes well for its future.”

The researchers said that if graphene solar cells reach 10 percent power conversion efficiency they could be a contender in the market place, if production costs are kept low enough.

The prototype solar cell created in the UF lab was built on a rigid base of silicon, which is not considered an economical material for mass production. But Hebard said that he sees real possibilities for combining the use of doped graphene with less expensive, more flexible substrates like the polymer sheets currently under development in research laboratories around the world.

Credits
WriterDonna Hesterman , donna.hesterman@ufl.edu, 352-846-2573SourceArthur Hebard, afh@ufl.edu, 352-222-6212SourceXiaochang Miao, xxmiaophy@gmail.com,

352-871-4116

Arthur Hebard | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>