Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underlying mechanism discovered for magnetic effect in superconducting spintronics

11.07.2018

New work on the interactions between superconductors and ferromagnets bridges the gap between theory on the long-range magnetic proximity effect and recent experimental results

The emerging field of spintronics leverages electron spin and magnetization. This could enhance the storage capacity of computer hard drives and potentially play an important role in quantum computing's future. Superconductor-ferromagnet (SF) structures are widely regarded as the building blocks of this superconducting spintronic technology.


Sketch of the magnetic effects the superconductor-ferromagnet bilayer has both when the layers are separated from each other and when they are put in contact.

Credit: Sergey Mironov

More conventional spintronic devices typically require large currents, so researchers are investigating the viability of low-resistance superconductors. Their new results could answer longstanding questions about how SF structures interact.

An international team of researchers recently revealed a general mechanism of the long-range electromagnetic proximity effect in SF structures in Applied Physics Letters, from AIP Publishing.

They explain that SF interactions led to a strong spread of stray magnetic field to the superconductor from the ferromagnet. The group's findings could help determine why ferromagnetic films transferred magnetic fields to their corresponding superconductors at distances longer than theoretically predicted.

"We expect our work will not only explain the existing puzzling experimental data on electrodynamics of superconductor-ferromagnet structures but also will provide the basis for the analysis of electrodynamics of any device of superconducting spintronics," Alexander Buzdin and Alexander Mel'nikov, co-authors of the paper, said in a joint statement.

Magnetic layers are used in spintronic devices to change and read the spin signals of an electron in an adjacent conducting material. In extremely low-temperature superconducting spintronics, bound electrons, called Cooper pairs, penetrate the ferromagnet layer. This in turn accelerates superconducting carriers to induce a current in the superconductor.

Scientists previously thought that the interplay between the system's superconducting and ferromagnetic components occurred solely from superconducting Cooper pairs penetrating into the adjacent ferromagnet. Buzdin explained how in the case of normal, nonsuperconducting metal, for example, the spread of the magnetic field in the opposite direction from the ferromagnet into the metal layers is possible only at the atomic length scale.

"For a superconducting material, it was believed that the scale of this spread [small] is of the order of the size of the Cooper pair, about 10 nanometers," said Buzdin.

Recent experimental results by other groups, however, showed a magnetic field could be present in the superconductor at distances one order of magnitude greater than expected. To start solving this puzzle, the group modeled a SF bilayer system before and after its superconductor and ferromagnet components came into contact. They found that screening currents accompanied the penetrating magnetic field, whereas these stray fields are absent in the superconductor's normal state.

Themagnetic vector potential, which is commonly used to describe the local magnetic field, was the only non-zero electromagnetic characteristic in the region of the stray fields in the superconductor. The vector potential is generally not observable in a normal metal in these conditions.

This led Buzdin and his colleagues to conclude that the penetration of Cooper pairs into the ferromagnet through the direct proximity effect is responsible for supercurrent flow inside the ferromagnet and the resulting appearance of the compensating supercurrents that generate magnetic fields inside the superconducting component.

The team plans to further study the electrodynamics of SF structures and use their findings to one day create new types of spin valves, which can be used in magnetic sensors and computer memory devices.

###

The article, "Electromagnetic proximity effect in planar superconductor-ferromagnet structures," is authored by Sergey Mironov, Alexander S. Mel'nikov and Alexander Buzdin. The article appeared in Applied Physics Letters July 9, 2018, (DOI: 10.1063/1.5037074) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5037074.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

Media Contact

Rhys Leahy
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Rhys Leahy | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5037074

More articles from Physics and Astronomy:

nachricht PPPL diagnostic is key to world record of German fusion experiment
10.07.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht Breaking the bond: To take part or not?
09.07.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

Im Focus: Probing nobelium with laser light

Sizes and shapes of nuclei with more than 100 protons were so far experimentally inaccessible. Laser spectroscopy is an established technique in measuring fundamental properties of exotic atoms and their nuclei. For the first time, this technique was now extended to precisely measure the optical excitation of atomic levels in the atomic shell of three isotopes of the heavy element nobelium, which contain 102 protons in their nuclei and do not occur naturally. This was reported by an international team lead by scientists from GSI Helmholtzzentrum für Schwerionenforschung.

Nuclei of heavy elements can be produced at minute quantities of a few atoms per second in fusion reactions using powerful particle accelerators. The obtained...

Im Focus: Asymmetric plasmonic antennas deliver femtosecond pulses for fast optoelectronics

A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 terahertz. This range in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Nanotechnology to fight cancer: From diagnosis to therapy

28.06.2018 | Event News

Biological Transformation: nature as a driver of innovations in engineering and manufacturing

28.06.2018 | Event News

 
Latest News

Measuring the Effects of Drugs on Cancer Cells

11.07.2018 | Life Sciences

Drones survey African wildlife

11.07.2018 | Earth Sciences

Unique brain 'fingerprint' can predict drug effectiveness

11.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>