Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrafast slow-motion microscope sees a single molecule vibrate

10.11.2016

An international team of scientists based in Regensburg, Germany, has now recorded the ultrafast motion of a single molecule directly in time and space by combining a femtosecond laser with an atomic resolution microscope.

Atoms and molecules are the constituents of virtually all matter that surrounds us. Interacting with each other while following the rules of nature, they form complex systems ranging from modern technology to living creatures. Their behavior, that is, what they actually do, basically determines all of natural and life sciences.


Single pentacen molecules vibrate on a gold surface.

Foto: Dominik Peller

They are so small, however, that we cannot observe them in daily life. Even with the best optical microscopes, atoms and molecules are a thousand times too small to be seen; the microscope would have to see down to the ångström scale (1 ångström = 0.0000000001 m). Yet, we would be able to solve innumerable vital problems if we could just view the microcosm directly and watch the elementary constituents of matter at work.

Only a few decades ago, imaging individual steady atoms became possible thanks to the invention of sophisticated types of microscopes that are not based on optics. But even in apparently stationary massive bodies, the individual atoms and molecules are actually not steady, but in a state of constant motion. They speed amongst their neighbors in random directions while vibrating and rotating vigorously.

And although we can imagine (and calculate) this rocking, rolling and shaking motion, it occurs unbelievably rapidly, taking only a few femtoseconds (one millionth of a billionth of a second, i.e. 0.000000000000001 s), which is way too fast to be resolved by any atomic microscope.

Consequently, even though the question of how individual atoms and molecules behave is at the heart of all fields of natural science, until recently, nobody had ever seen a single molecule move on its intrinsic ultrafast timescale. In order to literally watch their motion, one would need a microscope many billions of times more rapid than the fastest high-speed cameras, which has until now remained way out of reach.

An international team of scientists based in Regensburg, Germany, has now tackled this challenge. Their aim was to revolutionize the way in which researchers look at the nanoworld: advancing from images to moving images of molecules. To do so, they developed an unprecedented ultrafast microscope. They combined the most powerful tool researchers have to access ultrafast time scales, femtosecond laser pulses, with highly advanced scanning tunneling microscopy capable of imaging individual molecules. The principle of this microscopy technique is similar to a record player.

A sharp needle is moved across a surface to reveal its relief. But in scanning tunneling microscopy, the tip of this needle is as sharp as a single atom. Also, it does not touch the surface, but hovers over it while electrons move between the tip and surface thanks to a quantum mechanical effect called tunneling. As a result, the tip serves as a probe that is sensitive to corrugation smaller than a single molecule.

The researchers in Regensburg developed a novel scheme by controlling the tunneling process by ultrafast light pulses so short that each pulse only contained one single oscillation cycle of the lightwave. This mechanism gives them total quantum control over a select electron within a single molecule with simultaneous femtosecond temporal and sub-ångström spatial precision. As a result, they realized a microscope that not only allows them to image individual molecules, but also to “see” them move on their intrinsic time scale.

With this unique expertise, the researchers could – for the first time – record femtosecond snapshot images of a single molecule, directly resolved in space and time. Even more, they could set the molecule in motion and watch its ultrafast response. For this, they used two light pulses. The first stimulated an electron tunneling event, giving the molecule a kick that set it in motion, such that it began to vibrate atop the surface.

The second pulse arrived at the molecule a very short time later and attempted to drive a second tunneling event. Crucially, its ability to do so depended on the instantaneous position of the molecule in its vibrational motion. The researchers then repeated this scenario, while tracking the ability of the second pulse to drive electron tunneling, for a series of delay times between the first and second pulses. What resulted was a direct measurement of the molecule’s ultrafast motion in space and time – an oscillation with a period faster than a trillionth of a second – in the first-ever femtosecond single-molecule movie!

This development finally opens the door to exploring the mystery of the ultrafast microcosm that had previously been obscured. Accessing the nanoworld with all its intriguing facets in this unprecedented way is expected to reveal key steps in chemistry and biology, and inspire future technologies based on single-molecule devices and lightwave-driven electronics.

Publication: DOI: 10.1038/nature19816

Contact for media representatives:
Prof. Dr. Rupert Huber
Universität Regensburg
Lehrstuhl für Experimentelle und Angewandte Physik
Tel.: 0941 943-2070
Rupert.Huber@ur.de

Prof. Dr. Jascha Repp
Universität Regensburg
Professur für Experimentelle und Angewandte Physik
Tel.: 0941 943-4201
Jascha.Repp@ur.de

Claudia Kulke | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>