Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold quantum mix

23.11.2018

The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise hardly accessible. A team led by the Innsbruck physicist Francesca Ferlaino has now succeeded for the first time in mixing quantum gases of the strongly magnetic elements Erbium and Dysprosium and creating a dipolar quantum mixture.

Only a few years ago it seemed unfeasible to extend the techniques of atom manipulation and deep cooling in the ultracold regime to many-valence-electron atomic species. The reason being the increasing complexity in the atomic spectrum and the unknown scattering properties.


The Bose-Einstein condensates of Erbium and Dysprosium coexist and interact with each other.

IQOQI Innsbruck

However, a team of researchers, led by Ben Lev, in the US at Stanford University and an Austrian team, directed by Francesca Ferlaino, at the University of Innsbruck took the challenge and demonstrated quantum degeneracy of rare-earth species, using the strongly-magnetic, and rather unexplored, Dysprosium and Erbium atoms.

Ferlaino’s group focused the research on Erbium and developed a powerful, yet surprisingly simple approach to produce a Bose-Einstein condensate. “We have shown how the complexity of atomic physics can open up new possibilities," says Francesca Ferlaino from the Department of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences.

Research on magnetic species is gathering momentum worldwide since such atoms proved to be an ideal platform to create dipolar quantum matter, in which particles interact with each other via a long-range and orientation dependent interaction as little quantum magnets.

Dipolar quantum matter

In a new paper now published in the journal Physical Review Letters, the Austrian research team makes a new leap in the field of dipolar matter. They have mixed Erbium and Dysprosium and for the first time produced a dipolar quantum mixture.

“We studied very carefully the atomic spectra of these two species and made plans on how to combine them and reach simultaneous quantum degeneracy”, says Philipp Ilzhöfer, one of the two leading authors of the paper, “and our scheme worked out even better than expected allowing us to create a system in which Bose-Einstein condensates of Erbium and Dysprosium coexist and interact with each other”, adds Arno Trautmann, the other leading author. This advance promises to open novel research frontiers in the field of dipolar quantum matter because of the long-range interaction among the two species.

The research has been conducted in a new laboratory at the IQOQI and has been supported by the Austrian Academy of Sciences and an ERC Consolidator Grant. The work has been recommended by the editors of the journal as particularly important, interesting, and well written.

Wissenschaftliche Ansprechpartner:

Francesca Ferlaino
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Phone: +43 512 507 4740
Email: francesca.ferlaino@oeaw.ac.at
Web: http://www.erbium.at

Originalpublikation:

Dipolar Quantum Mixtures of Erbium and Dysprosium Atoms. A. Trautmann, P. Ilzhöfer, G. Durastante, C. Politi, M. Sohmen, M. J. Mark, and F. Ferlaino. Phys. Rev. Lett. 2018
DOI: https://doi.org/10.1103/PhysRevLett.121.213601

Weitere Informationen:

https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.121.213601 - Physics Synopsis: Making Mixtures of Magnetic Condensates
http://www.erbium.at - Arbeitsgruppe Dipolar Quantum Gases (Francesca Ferlaino)

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht Astronomers see 'warm' glow of Uranus's rings
21.06.2019 | University of California - Berkeley

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>