Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold atoms could provide 2D window to exotic 1D physics

05.03.2019

Rice physicists propose new vantage point to observe quantum fractionalization

Rice University physicists Matthew Foster and Seth Davis want to view a vexing quantum puzzle from an entirely new perspective. They just need the right vantage point and a place colder than deep space.


In an ultracold atomic experiment proposed by Rice University physicists Matthew Foster and Seth Davis, quantum fractionalization would be observed by density waves propagating in the direction of 1D quantum waveguides (left). In the absence of fractionalization (right), density waves would spread in a perpendicular direction.

Credit: Matthew Foster/Rice University

"There's a process in strongly interacting physics where fundamental particles, like electrons, can come together and behave as if they were a fraction of an electron," said Davis, a graduate student in Foster's research group. "It's called fractionalization. It's a really exotic, fundamental process that shows up theoretically in many places. It may have something to do with high-temperature superconductivity, and it could be useful for building quantum computers. But it's very hard to understand and even harder to measure."

In a recent paper in Physical Review Letters, Foster and Davis, both theoretical physicists, proposed an experiment to measure fractionalization not in electrons but in atoms so cold they follow the same quantum rules that dictate how electrons behave in quantum materials, a growing class of materials with exotic electronic and physical properties that governments and industry are eying for next-generation computers and electronic devices.

Quantum materials include high-temperature superconductors, one of the most puzzling mysteries in physics, and materials that exhibit topological phases, which earned its discoverers the 2016 Nobel Prize in Physics. The latter is the only place physicists have unambiguously measured fractionalization, in an exotic electronic state called the fractional quantum Hall effect. In this state, flat two-dimensional materials conduct electricity only along their one-dimensional edges.

"That's a 2D example," said Foster, assistant professor of physics and astronomy at Rice. "And it's clear that fractionalization is occurring there because if you measure the conductance of these edge states they behave as though they're made of particles that behave like one-third of an electron.

"There are no real particles carrying one-third of the electric charge," he said. "It's just the effect of all the electrons moving together in a such a way that if you create a local excitation, it will behave like an electron with one-third of a charge."

Foster and Davis said the main motivation for describing their ultracold atomic test was to be able to observe fractionalization in a system that is very different from the fractional quantum Hall example.

"What we're aiming at is just seeing this physics in one other context in an unambiguous way," said Foster, a member of Rice's Center for Quantum Materials (RCQM).

Their proposed experiment calls for laser-cooling atoms to act as stand-ins for electrons. In such experiments, lasers oppose the motion of atoms, progressively slowing them to colder and colder temperatures. The cold atoms are trapped by other lasers that form optical waveguides, one-dimensional channels where atoms can move left or right but cannot go around one another. The quantum behavior of the atoms in these one-dimensional guides mimics the behavior of electrons in 1D wires.

"All of the individual elements of the experiment have been developed, but we don't believe they've been put together in a single experimental setup," Foster said. "That's where we need the help of experimentalists who are experts in laser-cooling."

To observe fractionalization in an ultracold system, Foster and Davis propose creating a set of parallel 1D waveguides that are all in the same two-dimensional plane. A few additional atoms would populate the 1D guides near the center of the experiment.

"So we'll start with the 1D 'wires,' or guides, and the initial density in the middle, and then we'll drop some of the lasers and allow the atoms to interact between the wires in a kind of 2D mesh," Foster said. "We can very accurately describe the 1D system, where strong interactions cause the atoms to behave in a correlated way. Because the whole system is quantum mechanical and coherent, those correlations should get imprinted on the 2D system.

"Our probe is letting go of that extra bump of density and watching what it does," he said. "If the atoms in the 1D guides are not interacting, then the bump will just spread out between the wires. But, if there was initial fractionalization due to correlated effects in the wires, what we can confidently calculate is that the density will do something completely different. It will go the other direction, flying down the wires."

Foster said he's interested in discussing the feasibility of the test with ultracold atomic experimentalists.

"We know it can take years to build and perfect some of the experimental setups for these kinds of experiments," Foster said. "As theorists, we know the ingredients we need, but we don't know the ones that will be most challenging to implement or if it may be easier to modify some setups as opposed to others. That's where we'll need the help of our experimental colleagues."

###

The research was supported by the National Science Foundation, the Army Research Office and the Welch Foundation. The researchers used the National Science Foundation-supported DAVinCI supercomputer administered by Rice's Center for Research Computing and procured in a partnership with Rice's Ken Kennedy Institute for Information Technology.

RCQM leverages global partnerships and the strengths of more than 20 Rice research groups to address questions related to quantum materials. RCQM is supported by Rice's offices of the Provost and the Vice Provost for Research, the Wiess School of Natural Sciences, the Brown School of Engineering, the Smalley Institute for Nanoscale Science and Technology and the departments of Physics and Astronomy, Electrical and Computer Engineering, and Materials Science and NanoEngineering.

High-resolution IMAGES are available for download at:

https://news.rice.edu/files/2019/03/0227_FOSTER-mfsd05-lg-z2hnpf.jpg

CAPTION: Rice University physicists Seth Davis (left) and Matthew Foster have proposed a new experiment to measure quantum fractionalization in ultracold atoms. (Photo by Jeff Fitlow/Rice University)

https://news.rice.edu/files/2019/03/0305_FOSTER-waves-lg-2buxlf5.jpg

CAPTION: In an ultracold atomic experiment proposed by Rice University physicists Matthew Foster and Seth Davis, quantum fractionalization would be observed by density waves propagating in the direction of 1D quantum waveguides (left). In the absence of fractionalization (right), density waves would spread in a perpendicular direction. (Image courtesy of Matthew Foster/Rice University)

The DOI of the Physical Review Letters paper is: 10.1103/PhysRevLett.122.065302

A copy of the paper is available at: https://doi.org/10.1103/PhysRevLett.122.065302

This news release can be found online at news.rice.edu.

Follow Rice News and Media Relations on Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevLett.122.065302

More articles from Physics and Astronomy:

nachricht Bridging the nanoscale gap: A deep look inside atomic switches
22.07.2019 | Tokyo Institute of Technology

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Bridging the nanoscale gap: A deep look inside atomic switches

22.07.2019 | Physics and Astronomy

Regulation of root growth from afar: How genes from leaf cells affect root growth

22.07.2019 | Life Sciences

USF geoscientists discover mechanisms controlling Greenland ice sheet collapse

22.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>