Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold atoms and ultrafast lasers: Hamburg scientists combine experimental expertise

04.07.2018

Two separate research fields have been united in Hamburg for the very first time. Ultrashort laser pulses enable us to observe and manipulate matter on very short time scales, whereas ultracold atoms permit experiments with high precision and controllability. In the cluster of excellence “The Hamburg Centre for Ultrafast Imaging,” scientists from Universität Hamburg have united the two research fields and succeeded in observing the emergence of ions in ultracold atoms. Their findings have been published in the new scientific journal Communications Physics.

More than a century ago, Albert Einstein published his theoretical work on the photo-effect, which fundamentally describes the photoionization of matter, or the process of dissolving electrons from atoms by using light. This discovery earned him a Nobel Prize in 1921.


Foto: UHH/Wessels

Ultrakurze Laserpulse zur Untersuchung der Starkfeldionisation mit ultrakalten Atomen.

However, it turns out that the process is very complicated in detail. Up until now it has been nigh impossible to carry out experimental measurements of the absolute ionization probability, e.g., the percentage of atoms ionized after light irradiation.

The teams of scientists led by Prof. Dr. Markus Drescher and Prof. Dr. Klaus Sengstock have uniquely combined expertise in ultracold atoms with phenomena of ultrafast physics, which has opened up a fundamentally new experimental approach.

Ultrashort laser pulses can be so intense that they rip atoms apart. This process is called strong-field ionization and the details depend on the energy and color of the laser light. Up until now, it was not always possible to know which ionization regime dominates. The scientists have now succeeded in observing this in detail by using ultracold atoms. As there is hardly any atomic motion after the ionization process, it is possible to accurately measure the regimes.

The scientists used laser light to cool rubidium atoms to ultracold temperatures of 100 nanokelvins, only slightly above absolute zero temperature of -273.15° Celsius. An intense ultrashort laser pulse illuminated parts of the cloud of rubidium atoms for a very short time of 215 femtoseconds (a femtosecond is one millionth of one billionth of a second) and ionized a fraction of the atoms. The remaining atomic density was imaged onto a camera so that the amount of ionized atoms could be accurately measured.

In particular, the scientists observed that the atomic bond in an optical light field is modified so fast that the atomic shell cannot follow the oscillation of the light field. During ionization the atom thus absorbs multiple light particles (photons) simultaneously.

“The presented work paves the way towards further experiments using ultrashort laser pulses for creating ions and electrons in ultracold atomic samples,” lead author Philipp Wessels from Prof. Sengstock’s group explains.

“This leads to precise measurements of ultrafast processes by using ultracold atoms, because these systems can be controlled extremely well experimentally.” The results can also be used to help realize quantum computers based on ultracold ions. Such computers may solve certain problems faster than conventional ones.

Parallel to these experiments, an international collaboration with Prof. Nikolay Kabachnik (Moscow State University) and Prof. Andrey Kazansky (Ikerbasque, Spain) calculated the ionization process theoretically. The scientists modelled the quantum mechanical interaction between atom and laser field, with the following result: the theoretical predictions are in perfect agreement with the measured data.

More information:
P. Wessels, B. Ruff, T. Kroker, A. K. Kazansky,
N. M. Kabachnik, K. Sengstock, M. Drescher, and J. Simonet,
"Absolute strong-field ionization probabilities of ultracold rubidium atoms,"
arXiv:1711.01875 (2018).
Accepted in Communications Physics (new journal of the Nature group).
Link to the Journal: https://www.nature.com/commsphys/
DOI: 10.1038/s42005-018-0032-5

Weitere Informationen:

https://arxiv.org/abs/1711.01875

Birgit Kruse | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-hamburg.de/

More articles from Physics and Astronomy:

nachricht First diode for magnetic fields
21.11.2018 | Universität Innsbruck

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Sustainable energy supply in developing and emerging countries: What are the needs?

21.11.2018 | Power and Electrical Engineering

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>