Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold atoms and ultrafast lasers: Hamburg scientists combine experimental expertise

04.07.2018

Two separate research fields have been united in Hamburg for the very first time. Ultrashort laser pulses enable us to observe and manipulate matter on very short time scales, whereas ultracold atoms permit experiments with high precision and controllability. In the cluster of excellence “The Hamburg Centre for Ultrafast Imaging,” scientists from Universität Hamburg have united the two research fields and succeeded in observing the emergence of ions in ultracold atoms. Their findings have been published in the new scientific journal Communications Physics.

More than a century ago, Albert Einstein published his theoretical work on the photo-effect, which fundamentally describes the photoionization of matter, or the process of dissolving electrons from atoms by using light. This discovery earned him a Nobel Prize in 1921.


Foto: UHH/Wessels

Ultrakurze Laserpulse zur Untersuchung der Starkfeldionisation mit ultrakalten Atomen.

However, it turns out that the process is very complicated in detail. Up until now it has been nigh impossible to carry out experimental measurements of the absolute ionization probability, e.g., the percentage of atoms ionized after light irradiation.

The teams of scientists led by Prof. Dr. Markus Drescher and Prof. Dr. Klaus Sengstock have uniquely combined expertise in ultracold atoms with phenomena of ultrafast physics, which has opened up a fundamentally new experimental approach.

Ultrashort laser pulses can be so intense that they rip atoms apart. This process is called strong-field ionization and the details depend on the energy and color of the laser light. Up until now, it was not always possible to know which ionization regime dominates. The scientists have now succeeded in observing this in detail by using ultracold atoms. As there is hardly any atomic motion after the ionization process, it is possible to accurately measure the regimes.

The scientists used laser light to cool rubidium atoms to ultracold temperatures of 100 nanokelvins, only slightly above absolute zero temperature of -273.15° Celsius. An intense ultrashort laser pulse illuminated parts of the cloud of rubidium atoms for a very short time of 215 femtoseconds (a femtosecond is one millionth of one billionth of a second) and ionized a fraction of the atoms. The remaining atomic density was imaged onto a camera so that the amount of ionized atoms could be accurately measured.

In particular, the scientists observed that the atomic bond in an optical light field is modified so fast that the atomic shell cannot follow the oscillation of the light field. During ionization the atom thus absorbs multiple light particles (photons) simultaneously.

“The presented work paves the way towards further experiments using ultrashort laser pulses for creating ions and electrons in ultracold atomic samples,” lead author Philipp Wessels from Prof. Sengstock’s group explains.

“This leads to precise measurements of ultrafast processes by using ultracold atoms, because these systems can be controlled extremely well experimentally.” The results can also be used to help realize quantum computers based on ultracold ions. Such computers may solve certain problems faster than conventional ones.

Parallel to these experiments, an international collaboration with Prof. Nikolay Kabachnik (Moscow State University) and Prof. Andrey Kazansky (Ikerbasque, Spain) calculated the ionization process theoretically. The scientists modelled the quantum mechanical interaction between atom and laser field, with the following result: the theoretical predictions are in perfect agreement with the measured data.

More information:
P. Wessels, B. Ruff, T. Kroker, A. K. Kazansky,
N. M. Kabachnik, K. Sengstock, M. Drescher, and J. Simonet,
"Absolute strong-field ionization probabilities of ultracold rubidium atoms,"
arXiv:1711.01875 (2018).
Accepted in Communications Physics (new journal of the Nature group).
Link to the Journal: https://www.nature.com/commsphys/
DOI: 10.1038/s42005-018-0032-5

Weitere Informationen:

https://arxiv.org/abs/1711.01875

Birgit Kruse | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-hamburg.de/

More articles from Physics and Astronomy:

nachricht Researchers develop new lens manufacturing technique
21.05.2019 | Washington State University

nachricht Planetologists explain how the formation of the moon brought water to Earth
21.05.2019 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>