Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra ultrasound to transform new tech

17.01.2019

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.


Image of ultrasound sensor.

Credit: University of Queensland

World first experiments at the University of Queensland have combined modern nanofabrication and nanophotonics techniques to build the first ultraprecise ultrasound sensors on a silicon chip.

According to lead author Dr Sahar Basiri-Esfahani, a Sêr Cymru II Fellow at Swansea University, the impressive accuracy of the technology may change how we understand biology.

"We'll soon have the ability to listen to the sound emitted by living bacteria and cells," she said.

"This is a particularly attractive application, as it could fundamentally improve our understanding of how these small biological systems function," "And a deeper understanding of these biological systems may lead to new treatments, so we're looking forward to seeing what future applications emerge." Dr Basiri-Esfahani said.

Professor Warwick Bowen, from UQ's Precision Sensing Initiative and the Australian Centre for Engineered Quantum Systems said that the leap forward may usher in a host of exciting new technologies. "This is a major step forward, since accurate ultrasound measurement is critical for a range of applications," he said.

"Ultrasound is currently used for medical ultrasound, commonly to examine pregnant women, as well as for high resolution biomedical imaging to detect tumours and other anomalies.

"It's also commonly used for spatial applications, like in the sonar imaging of underwater objects or in the navigation of unmanned aerial vehicles. "Improving these applications requires smaller higher precision sensors, and with this new technique, that's exactly what we've been able to develop."

The new ultrasound-sensing technology, for the first time, reaches the regime where its noise is dominated by the random miniscule forces from surrounding air molecules.

"We've developed a near perfect ultrasound detector, hitting the limits of what the technology is actually capable of achieving," Professor Bowen said.

"We're now able to measure ultrasound waves that apply tiny forces - comparable to the gravitational force on a virus - and we can do this with sensors smaller than a millimetre across."

###

The research was supported by the Australian Research Council, the European Union's Horizon 2020 research and innovation programme (Marie Skłodowska-Curie Actions COFUND), the Welsh Government through the European Regional Development Fund (Sêr Cymru Programme), and the United States Air Force Office of Scientific Research.

Media Contact

Delyth Purchase
d.purchase@swansea.ac.uk
01-792-513-022

 @swanseauni

http://www.swansea.ac.uk/ 

Delyth Purchase | EurekAlert!
Further information:
https://www.swansea.ac.uk/press-office/latest-research/ultraultrasoundtotransformnewtech.php
http://dx.doi.org/10.1038/s41467-018-08038-4

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

Goodbye Absorbers: High-Precision Laser Welding of Plastics

10.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>