Ultra high sensitivity magnetic field sensors: The attraction of magnonic crystals

Here, Mitsuteru Inoue and colleagues at Toyohashi University of Technology demonstrate that magnonic crystals—artificial magnetic crystal structures for controlling the propagation of magnetostatic waves—exhibit properties enabling the fabrication of extremely sensitive magnetic field sensors operable at room temperature.

Magnonic crystals support the propagation of magnetostatic waves through the crystal spin system or suppress the propagation of waves due to the periodicity of the crystal structure. In this research the Toyohashi Tech researchers fabricated magnonic crystals by the direct formation of one-dimensional arrays of metal strips on top of yttrium iron garnet, which serves as the propagation medium.

The metal stripes induced an attenuation band in the frequency spectra of the magnonic crystal, and the propagation of waves with the corresponding frequencies was strictly prohibited.

The frequency of the attenuation band was very sensitive to an external magnetic field applied to the crystal, where a 1 Oe change in the field resulted in a 2.6 MHz shift in the band gap. The maximum detection sensitivity of the magnonic crystals was more than 10 times greater that of a giant magneto-impedance element.

The next challenge for the researchers is to demonstrate the measurement of magnetic fields in three dimensions, which is possible using two-dimensional magnonic crystals.

Reference:
Mitsuteru Inoue, Alexander Baryshev, Hiroyuki Takagi, Pang Boey Lim, Kohei Hatafuku, Josho Noda, and Kenji TogoInvestigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperatureApplied Physics Letters 98, 132511 (2011)DOI: 10.1063/1.3567940Department of Electrical and Electronic Engineering, Toyohashi University of Technology, JapanDepartment website: Inoue Lab: http://www.maglab.eee.tut.ac.jp/eng-index.html

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors