Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI astronomers capture first-of-kind image at distant star

14.01.2010
Two University of Iowa researchers have made the first direct radio image of a stellar coronal loop at a star, other than the sun, thereby providing scientists with information that may lead to a better understanding of how such phenomena as space weather affect the Earth.

Robert Mutel, professor in the University of Iowa College of Liberal Arts and Sciences Department of Physics and Astronomy, and his graduate student William Peterson of Marshalltown, Iowa, spearheaded the research, which included astronomers from New Mexico and Switzerland. They published their findings in the Jan. 14 issue of the Journal Nature.

Mutel said that the image of the coronal loop (roughly resembling a rainbow) was made of the star Algol, a well-known variable star in the constellation Perseus. Algol (Arabic for demon) is also know as the Demon Star and is one of the first eclipsing binary stars and variable stars to have been discovered. Its brightness as seen from Earth temporarily decreases roughly every 69 hours.

"We imaged the coronal loop using a global array of radio telescopes," Mutel said. "We also carefully compared radio and optical coordinates, so we know where the radio source was located with respect to the star."

"Earlier attempts to image stellar coronal loops in visible light resulted in fuzzy blobs, but we used a global array of radio telescopes to make a series of images over a six-month period. High resolution radio interferometery allows us to image features which would otherwise be undetectable."

The instrument Mutel and Peterson used is actually a combination of 13 radio telescopes linked by computer. They include the 10-telescope VLBA (Very Long Baseline Array) composed of telescopes in Mauna Kea, Hawaii, St. Croix in the Virgin Islands, and North Liberty, Iowa; a 100-meter instrument at the Max Planck Institute for Radio Astronomy near Bonn, Germany; the National Radio Astronomy Observatory (NRAO) at Green Bank, W. Va.; and the NRAO's Very Large Array (VLA) in New Mexico.

Despite the impressive coordination of telescopes dedicated to capturing information from Algol, making sense out of all the data is difficult. "Learning how to take radio data and turn it into an image is a challenge," Peterson said.

Interpreting the data is perhaps just as challenging. Mutel noted that the coronal loop at Algol is similar to those at the sun, but the magnetic field at Algol is about 1,000 times more powerful.

Peterson said that the larger-than-predicted size of the coronal loop is probably due to the tidal effects of the companion star distorting the loop and stretching it. Additionally, the companion star causes the coronal loop to continually face the companion star.

Mutel said that a better understanding of Algol's coronal loops might help us to better understand the sun, something that could benefit a wide range of human activities.

"We really need to understand our sun," he said. "The sun is close to us and can be studied, but it is only one star. By studying other stars, we will be able to put its behavior into a broader context.

"Coronal loops at the sun are associated with sunspots. Sunspots, in turn, are associated with space weather, a constant stream of charged particles flowing outward from the sun. The intensity of solar radiation can affect everything from communications systems that rely on satellites to the health of astronauts who must sometimes work in space."

Mutel said that future research likely will focus on obtaining coronal loop images at other stars.

"Perhaps we can work toward predictions of space weather. Maybe we can better understand the physics of space weather through a study of coronal loops," he said.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>